01. Law of Mass Action
Chemical Equilibrium

229060 The equilibrium constant for the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ ) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ is 64. The rate constant for the forward reaction is $\mathbf{1 6 0}$, the rate constant for the backward reaction is:

1 0.4
2 2.5
3 6.2
4 $10.24 \times 10^{3}$
Chemical Equilibrium

229061 The equilibrium constant $\left(K_{c}\right)$ for the reaction $\mathrm{HA}+\mathrm{B} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{A}^{-}$is $\mathbf{1 0 0}$. If the rate constant for the forward reaction is $10^{5}$, rate constant for the reverse reaction is

1 $10^{-3}$
2 $10^{-5}$
3 $10^{7}$
4 $10^{3}$
Chemical Equilibrium

229054 If 1.0 mole of $I_{2}$ is introduced into 1.0 litre flask at $1000 \mathrm{~K}$, at equilibrium $\left(K_{c}=10^{-6}\right)$, which one is correct?

1 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]>\left[\mathrm{I}^{-}(\mathrm{g})\right]$
2 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]<\left[\mathrm{I}^{-}(\mathrm{g})\right]$
3 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\left[\mathrm{I}^{-}(\mathrm{g})\right]$
4 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\frac{1}{2}\left[\mathrm{I}^{-}(\mathrm{g})\right]$
Chemical Equilibrium

229058 By applying law of mass action, the equilibrium constant $\mathrm{K}$ for the reaction
$\mathbf{H A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

1 $\mathrm{K}=\frac{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}$
2 $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
3 $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{A}^{-}\right][\mathrm{HA}]}$
4 $\mathrm{K}=\frac{[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229060 The equilibrium constant for the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ ) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ is 64. The rate constant for the forward reaction is $\mathbf{1 6 0}$, the rate constant for the backward reaction is:

1 0.4
2 2.5
3 6.2
4 $10.24 \times 10^{3}$
Chemical Equilibrium

229061 The equilibrium constant $\left(K_{c}\right)$ for the reaction $\mathrm{HA}+\mathrm{B} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{A}^{-}$is $\mathbf{1 0 0}$. If the rate constant for the forward reaction is $10^{5}$, rate constant for the reverse reaction is

1 $10^{-3}$
2 $10^{-5}$
3 $10^{7}$
4 $10^{3}$
Chemical Equilibrium

229054 If 1.0 mole of $I_{2}$ is introduced into 1.0 litre flask at $1000 \mathrm{~K}$, at equilibrium $\left(K_{c}=10^{-6}\right)$, which one is correct?

1 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]>\left[\mathrm{I}^{-}(\mathrm{g})\right]$
2 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]<\left[\mathrm{I}^{-}(\mathrm{g})\right]$
3 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\left[\mathrm{I}^{-}(\mathrm{g})\right]$
4 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\frac{1}{2}\left[\mathrm{I}^{-}(\mathrm{g})\right]$
Chemical Equilibrium

229058 By applying law of mass action, the equilibrium constant $\mathrm{K}$ for the reaction
$\mathbf{H A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

1 $\mathrm{K}=\frac{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}$
2 $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
3 $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{A}^{-}\right][\mathrm{HA}]}$
4 $\mathrm{K}=\frac{[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
Chemical Equilibrium

229060 The equilibrium constant for the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ ) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ is 64. The rate constant for the forward reaction is $\mathbf{1 6 0}$, the rate constant for the backward reaction is:

1 0.4
2 2.5
3 6.2
4 $10.24 \times 10^{3}$
Chemical Equilibrium

229061 The equilibrium constant $\left(K_{c}\right)$ for the reaction $\mathrm{HA}+\mathrm{B} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{A}^{-}$is $\mathbf{1 0 0}$. If the rate constant for the forward reaction is $10^{5}$, rate constant for the reverse reaction is

1 $10^{-3}$
2 $10^{-5}$
3 $10^{7}$
4 $10^{3}$
Chemical Equilibrium

229054 If 1.0 mole of $I_{2}$ is introduced into 1.0 litre flask at $1000 \mathrm{~K}$, at equilibrium $\left(K_{c}=10^{-6}\right)$, which one is correct?

1 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]>\left[\mathrm{I}^{-}(\mathrm{g})\right]$
2 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]<\left[\mathrm{I}^{-}(\mathrm{g})\right]$
3 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\left[\mathrm{I}^{-}(\mathrm{g})\right]$
4 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\frac{1}{2}\left[\mathrm{I}^{-}(\mathrm{g})\right]$
Chemical Equilibrium

229058 By applying law of mass action, the equilibrium constant $\mathrm{K}$ for the reaction
$\mathbf{H A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

1 $\mathrm{K}=\frac{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}$
2 $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
3 $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{A}^{-}\right][\mathrm{HA}]}$
4 $\mathrm{K}=\frac{[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
Chemical Equilibrium

229060 The equilibrium constant for the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ ) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ is 64. The rate constant for the forward reaction is $\mathbf{1 6 0}$, the rate constant for the backward reaction is:

1 0.4
2 2.5
3 6.2
4 $10.24 \times 10^{3}$
Chemical Equilibrium

229061 The equilibrium constant $\left(K_{c}\right)$ for the reaction $\mathrm{HA}+\mathrm{B} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{A}^{-}$is $\mathbf{1 0 0}$. If the rate constant for the forward reaction is $10^{5}$, rate constant for the reverse reaction is

1 $10^{-3}$
2 $10^{-5}$
3 $10^{7}$
4 $10^{3}$
Chemical Equilibrium

229054 If 1.0 mole of $I_{2}$ is introduced into 1.0 litre flask at $1000 \mathrm{~K}$, at equilibrium $\left(K_{c}=10^{-6}\right)$, which one is correct?

1 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]>\left[\mathrm{I}^{-}(\mathrm{g})\right]$
2 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]<\left[\mathrm{I}^{-}(\mathrm{g})\right]$
3 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\left[\mathrm{I}^{-}(\mathrm{g})\right]$
4 $\left[\mathrm{I}_{2}(\mathrm{~g})\right]=\frac{1}{2}\left[\mathrm{I}^{-}(\mathrm{g})\right]$
Chemical Equilibrium

229058 By applying law of mass action, the equilibrium constant $\mathrm{K}$ for the reaction
$\mathbf{H A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

1 $\mathrm{K}=\frac{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}$
2 $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
3 $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{A}^{-}\right][\mathrm{HA}]}$
4 $\mathrm{K}=\frac{[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$