229000 In the reaction of a $A+2 B \rightarrow C+2 D$, the intitial rate, $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}$ at $\mathrm{t}=0$ was found to be $2.6 \times 10^{-2} \mathrm{Ms}^{-1}$. What is the value of $-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$ at $\mathrm{t}=\mathbf{0}$ in $\mathrm{Ms}^{-1}$ ?
229002
Consider the following reactions in which all the reactants and the products are in gaseous state.
$\begin{gathered}
2 \mathrm{PQ} \rightleftharpoons \mathrm{P}_{2}+\mathrm{Q}_{2} ; \mathrm{K}_{1}=2.5 \times 10^{5} \\
\mathrm{PQ}+\frac{1}{2} \mathrm{R}_{2} \rightleftharpoons \mathrm{PQR} ; \mathrm{K}_{2}=5 \times 10^{-3}
\end{gathered}$
The value of $K_{3}$ for the equilibrium
$\begin{array}{ll}
\frac{\mathbf{1}}{\mathbf{2}} \mathbf{P}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{Q}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{R}_{\mathbf{2}} \rightleftharpoons \mathbf{P Q R} \text {, is } \\
\end{array}$
229000 In the reaction of a $A+2 B \rightarrow C+2 D$, the intitial rate, $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}$ at $\mathrm{t}=0$ was found to be $2.6 \times 10^{-2} \mathrm{Ms}^{-1}$. What is the value of $-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$ at $\mathrm{t}=\mathbf{0}$ in $\mathrm{Ms}^{-1}$ ?
229002
Consider the following reactions in which all the reactants and the products are in gaseous state.
$\begin{gathered}
2 \mathrm{PQ} \rightleftharpoons \mathrm{P}_{2}+\mathrm{Q}_{2} ; \mathrm{K}_{1}=2.5 \times 10^{5} \\
\mathrm{PQ}+\frac{1}{2} \mathrm{R}_{2} \rightleftharpoons \mathrm{PQR} ; \mathrm{K}_{2}=5 \times 10^{-3}
\end{gathered}$
The value of $K_{3}$ for the equilibrium
$\begin{array}{ll}
\frac{\mathbf{1}}{\mathbf{2}} \mathbf{P}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{Q}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{R}_{\mathbf{2}} \rightleftharpoons \mathbf{P Q R} \text {, is } \\
\end{array}$
229000 In the reaction of a $A+2 B \rightarrow C+2 D$, the intitial rate, $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}$ at $\mathrm{t}=0$ was found to be $2.6 \times 10^{-2} \mathrm{Ms}^{-1}$. What is the value of $-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$ at $\mathrm{t}=\mathbf{0}$ in $\mathrm{Ms}^{-1}$ ?
229002
Consider the following reactions in which all the reactants and the products are in gaseous state.
$\begin{gathered}
2 \mathrm{PQ} \rightleftharpoons \mathrm{P}_{2}+\mathrm{Q}_{2} ; \mathrm{K}_{1}=2.5 \times 10^{5} \\
\mathrm{PQ}+\frac{1}{2} \mathrm{R}_{2} \rightleftharpoons \mathrm{PQR} ; \mathrm{K}_{2}=5 \times 10^{-3}
\end{gathered}$
The value of $K_{3}$ for the equilibrium
$\begin{array}{ll}
\frac{\mathbf{1}}{\mathbf{2}} \mathbf{P}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{Q}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{R}_{\mathbf{2}} \rightleftharpoons \mathbf{P Q R} \text {, is } \\
\end{array}$
229000 In the reaction of a $A+2 B \rightarrow C+2 D$, the intitial rate, $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}$ at $\mathrm{t}=0$ was found to be $2.6 \times 10^{-2} \mathrm{Ms}^{-1}$. What is the value of $-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$ at $\mathrm{t}=\mathbf{0}$ in $\mathrm{Ms}^{-1}$ ?
229002
Consider the following reactions in which all the reactants and the products are in gaseous state.
$\begin{gathered}
2 \mathrm{PQ} \rightleftharpoons \mathrm{P}_{2}+\mathrm{Q}_{2} ; \mathrm{K}_{1}=2.5 \times 10^{5} \\
\mathrm{PQ}+\frac{1}{2} \mathrm{R}_{2} \rightleftharpoons \mathrm{PQR} ; \mathrm{K}_{2}=5 \times 10^{-3}
\end{gathered}$
The value of $K_{3}$ for the equilibrium
$\begin{array}{ll}
\frac{\mathbf{1}}{\mathbf{2}} \mathbf{P}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{Q}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{R}_{\mathbf{2}} \rightleftharpoons \mathbf{P Q R} \text {, is } \\
\end{array}$