00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228945 At a certain temperature, equilibrium constant $\left(K_{c}\right)$ is 16 for the reaction.
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \text \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
If one mole of each of the four gases are taken in one litre container, the equilibrium concentration of $\mathrm{NO}$ will be

1 0.4 mole
2 1.6 mole
3 0.6 mole
4 0.66 mole
Chemical Equilibrium

228946 The equilibrium constant for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$ and, $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathbf{6 H _ { 2 }}$ $\rightleftharpoons \quad 4 \mathrm{NH}_{3}(\mathrm{~g})$ are $K_{1}$ and $K_{2}$, respectively. The relationship between $K_{1}$ and $K_{2}$ is

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{-2}$
3 $\mathrm{K}_{2}=\mathrm{K}_{2}^{2}$
4 $\mathrm{K}_{2}=\sqrt{\mathrm{K}_{1}}$
5 $\mathrm{K}_{2}=\sqrt{\mathrm{K}_{2}}$
Chemical Equilibrium

228948 Change in volume of the system does not alter the number of moles in which of the following equilibrium ?

1 $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO} 2 \mathrm{NO}(\mathrm{g})$
2 $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
3 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \boxminus \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
4 $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Chemical Equilibrium

228949 For $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$, rate and rate constants are $2 \times 10^{-3}$ and $4 \times 10^{-4}$ respectively. Then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ at that time will be

1 $0.5 \times 10^{-4}$
2 $0.5 \times 10^{-3}$
3 2
4 5
Chemical Equilibrium

228945 At a certain temperature, equilibrium constant $\left(K_{c}\right)$ is 16 for the reaction.
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \text \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
If one mole of each of the four gases are taken in one litre container, the equilibrium concentration of $\mathrm{NO}$ will be

1 0.4 mole
2 1.6 mole
3 0.6 mole
4 0.66 mole
Chemical Equilibrium

228946 The equilibrium constant for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$ and, $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathbf{6 H _ { 2 }}$ $\rightleftharpoons \quad 4 \mathrm{NH}_{3}(\mathrm{~g})$ are $K_{1}$ and $K_{2}$, respectively. The relationship between $K_{1}$ and $K_{2}$ is

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{-2}$
3 $\mathrm{K}_{2}=\mathrm{K}_{2}^{2}$
4 $\mathrm{K}_{2}=\sqrt{\mathrm{K}_{1}}$
5 $\mathrm{K}_{2}=\sqrt{\mathrm{K}_{2}}$
Chemical Equilibrium

228948 Change in volume of the system does not alter the number of moles in which of the following equilibrium ?

1 $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO} 2 \mathrm{NO}(\mathrm{g})$
2 $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
3 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \boxminus \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
4 $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Chemical Equilibrium

228949 For $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$, rate and rate constants are $2 \times 10^{-3}$ and $4 \times 10^{-4}$ respectively. Then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ at that time will be

1 $0.5 \times 10^{-4}$
2 $0.5 \times 10^{-3}$
3 2
4 5
Chemical Equilibrium

228945 At a certain temperature, equilibrium constant $\left(K_{c}\right)$ is 16 for the reaction.
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \text \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
If one mole of each of the four gases are taken in one litre container, the equilibrium concentration of $\mathrm{NO}$ will be

1 0.4 mole
2 1.6 mole
3 0.6 mole
4 0.66 mole
Chemical Equilibrium

228946 The equilibrium constant for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$ and, $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathbf{6 H _ { 2 }}$ $\rightleftharpoons \quad 4 \mathrm{NH}_{3}(\mathrm{~g})$ are $K_{1}$ and $K_{2}$, respectively. The relationship between $K_{1}$ and $K_{2}$ is

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{-2}$
3 $\mathrm{K}_{2}=\mathrm{K}_{2}^{2}$
4 $\mathrm{K}_{2}=\sqrt{\mathrm{K}_{1}}$
5 $\mathrm{K}_{2}=\sqrt{\mathrm{K}_{2}}$
Chemical Equilibrium

228948 Change in volume of the system does not alter the number of moles in which of the following equilibrium ?

1 $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO} 2 \mathrm{NO}(\mathrm{g})$
2 $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
3 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \boxminus \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
4 $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Chemical Equilibrium

228949 For $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$, rate and rate constants are $2 \times 10^{-3}$ and $4 \times 10^{-4}$ respectively. Then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ at that time will be

1 $0.5 \times 10^{-4}$
2 $0.5 \times 10^{-3}$
3 2
4 5
Chemical Equilibrium

228945 At a certain temperature, equilibrium constant $\left(K_{c}\right)$ is 16 for the reaction.
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \text \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
If one mole of each of the four gases are taken in one litre container, the equilibrium concentration of $\mathrm{NO}$ will be

1 0.4 mole
2 1.6 mole
3 0.6 mole
4 0.66 mole
Chemical Equilibrium

228946 The equilibrium constant for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$ and, $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathbf{6 H _ { 2 }}$ $\rightleftharpoons \quad 4 \mathrm{NH}_{3}(\mathrm{~g})$ are $K_{1}$ and $K_{2}$, respectively. The relationship between $K_{1}$ and $K_{2}$ is

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{-2}$
3 $\mathrm{K}_{2}=\mathrm{K}_{2}^{2}$
4 $\mathrm{K}_{2}=\sqrt{\mathrm{K}_{1}}$
5 $\mathrm{K}_{2}=\sqrt{\mathrm{K}_{2}}$
Chemical Equilibrium

228948 Change in volume of the system does not alter the number of moles in which of the following equilibrium ?

1 $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO} 2 \mathrm{NO}(\mathrm{g})$
2 $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
3 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \boxminus \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
4 $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Chemical Equilibrium

228949 For $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$, rate and rate constants are $2 \times 10^{-3}$ and $4 \times 10^{-4}$ respectively. Then the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ at that time will be

1 $0.5 \times 10^{-4}$
2 $0.5 \times 10^{-3}$
3 2
4 5