228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.
228935
For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?
228941
The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is
228943
Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.
228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.
228935
For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?
228941
The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is
228943
Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.
228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.
228935
For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?
228941
The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is
228943
Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.
228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.
228935
For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?
228941
The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is
228943
Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.
228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.
228935
For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?
228941
The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is
228943
Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.