00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.

1 $-82.64 \mathrm{Cal}$
2 $-826.4 \mathrm{Cal}$
3 $-1652.8 \mathrm{Cal}$
4 $-165.2 \mathrm{Cal}$
Chemical Equilibrium

228935 For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?

1 $\mathrm{K}_{1} \sqrt{\mathrm{K}_{2}}=\mathrm{K}_{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{3}=\mathrm{K}_{2}$
3 $\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$
4 $\mathrm{K}_{3}=\left(\mathrm{K}_{2}\right)^{3}\left(\mathrm{~K}_{1}\right)^{2}$
Chemical Equilibrium

228941 The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is

1 $\frac{1}{20}$
2 20
3 $\frac{1}{42}$
4 21
Chemical Equilibrium

228943 Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

228944 2 moles $\mathrm{PCl}_{5}$ were introduced in a $2 \mathrm{~L}$ flask and heated at $625 \mathrm{~K}$ to establish equilibrium when $60 \%$ of $\mathrm{PCl}_{5}$ was dissociated into $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$. The equilibrium constant is

1 0.90
2 1.8
3 0.128
4 0.53
Chemical Equilibrium

228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.

1 $-82.64 \mathrm{Cal}$
2 $-826.4 \mathrm{Cal}$
3 $-1652.8 \mathrm{Cal}$
4 $-165.2 \mathrm{Cal}$
Chemical Equilibrium

228935 For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?

1 $\mathrm{K}_{1} \sqrt{\mathrm{K}_{2}}=\mathrm{K}_{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{3}=\mathrm{K}_{2}$
3 $\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$
4 $\mathrm{K}_{3}=\left(\mathrm{K}_{2}\right)^{3}\left(\mathrm{~K}_{1}\right)^{2}$
Chemical Equilibrium

228941 The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is

1 $\frac{1}{20}$
2 20
3 $\frac{1}{42}$
4 21
Chemical Equilibrium

228943 Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

228944 2 moles $\mathrm{PCl}_{5}$ were introduced in a $2 \mathrm{~L}$ flask and heated at $625 \mathrm{~K}$ to establish equilibrium when $60 \%$ of $\mathrm{PCl}_{5}$ was dissociated into $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$. The equilibrium constant is

1 0.90
2 1.8
3 0.128
4 0.53
Chemical Equilibrium

228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.

1 $-82.64 \mathrm{Cal}$
2 $-826.4 \mathrm{Cal}$
3 $-1652.8 \mathrm{Cal}$
4 $-165.2 \mathrm{Cal}$
Chemical Equilibrium

228935 For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?

1 $\mathrm{K}_{1} \sqrt{\mathrm{K}_{2}}=\mathrm{K}_{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{3}=\mathrm{K}_{2}$
3 $\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$
4 $\mathrm{K}_{3}=\left(\mathrm{K}_{2}\right)^{3}\left(\mathrm{~K}_{1}\right)^{2}$
Chemical Equilibrium

228941 The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is

1 $\frac{1}{20}$
2 20
3 $\frac{1}{42}$
4 21
Chemical Equilibrium

228943 Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

228944 2 moles $\mathrm{PCl}_{5}$ were introduced in a $2 \mathrm{~L}$ flask and heated at $625 \mathrm{~K}$ to establish equilibrium when $60 \%$ of $\mathrm{PCl}_{5}$ was dissociated into $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$. The equilibrium constant is

1 0.90
2 1.8
3 0.128
4 0.53
Chemical Equilibrium

228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.

1 $-82.64 \mathrm{Cal}$
2 $-826.4 \mathrm{Cal}$
3 $-1652.8 \mathrm{Cal}$
4 $-165.2 \mathrm{Cal}$
Chemical Equilibrium

228935 For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?

1 $\mathrm{K}_{1} \sqrt{\mathrm{K}_{2}}=\mathrm{K}_{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{3}=\mathrm{K}_{2}$
3 $\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$
4 $\mathrm{K}_{3}=\left(\mathrm{K}_{2}\right)^{3}\left(\mathrm{~K}_{1}\right)^{2}$
Chemical Equilibrium

228941 The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is

1 $\frac{1}{20}$
2 20
3 $\frac{1}{42}$
4 21
Chemical Equilibrium

228943 Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

228944 2 moles $\mathrm{PCl}_{5}$ were introduced in a $2 \mathrm{~L}$ flask and heated at $625 \mathrm{~K}$ to establish equilibrium when $60 \%$ of $\mathrm{PCl}_{5}$ was dissociated into $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$. The equilibrium constant is

1 0.90
2 1.8
3 0.128
4 0.53
Chemical Equilibrium

228934 The equilibrium constant $\left(K_{p}\right)$ for the formation of ammonia from its constituent elements at $27^{\circ} \mathrm{C}$ is $1.2 \times 10^{-4}$ and at $127^{\circ} \mathrm{C}$ is $0.60 \times 10^{-4}$. Calculate the mean heat of formation of ammonia mole in this temperature range.

1 $-82.64 \mathrm{Cal}$
2 $-826.4 \mathrm{Cal}$
3 $-1652.8 \mathrm{Cal}$
4 $-165.2 \mathrm{Cal}$
Chemical Equilibrium

228935 For the following three reactions (i), (ii) and (iii), equilibrium constants are given
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \quad \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
Which of the following relations is correct?

1 $\mathrm{K}_{1} \sqrt{\mathrm{K}_{2}}=\mathrm{K}_{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{3}=\mathrm{K}_{2}$
3 $\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$
4 $\mathrm{K}_{3}=\left(\mathrm{K}_{2}\right)^{3}\left(\mathrm{~K}_{1}\right)^{2}$
Chemical Equilibrium

228941 The equilibrium constant for the following reactions are given at $25^{\circ} \mathrm{C}$
$\mathbf{2 A}\rightleftharpoons \mathrm{B}+\mathbf{C}, \mathrm{K}_{\mathbf{1}}=\mathbf{1 . 0}$
$2B \rightleftharpoons C+D, K_{2}=16$
$2 C+D\rightleftharpoons 2 P, K_{3}=25$
The equilibrium constant for the reaction
$\mathbf{P} \rightleftharpoons \mathrm{A}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{B}$ at $25^{\circ} \mathrm{C}$ is

1 $\frac{1}{20}$
2 20
3 $\frac{1}{42}$
4 21
Chemical Equilibrium

228943 Assertion: If value of equilibrium constant is $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$. If chemical reaction is reversed $\mathrm{C} \rightleftharpoons \mathrm{A}+\mathrm{B}$, then value of equilibrium constant will be $1 / K_{c}$.
Reason: Equilibrium constant depends upon the expression of chemical reaction.

1 If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Chemical Equilibrium

228944 2 moles $\mathrm{PCl}_{5}$ were introduced in a $2 \mathrm{~L}$ flask and heated at $625 \mathrm{~K}$ to establish equilibrium when $60 \%$ of $\mathrm{PCl}_{5}$ was dissociated into $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$. The equilibrium constant is

1 0.90
2 1.8
3 0.128
4 0.53