00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228928 For the reaction,
$\mathbf{A}+\mathbf{B} \rightleftharpoons \mathbf{C}+\mathbf{D}$,
the initial concentrations of $A$ and $B$ are equal. The equilibrium concentration of $\mathrm{C}$ is two times the equilibrium concentration of $A$. The equilibrium constant is

1 4
2 $\frac{1}{4}$
3 9
4 $\frac{1}{9}$
Chemical Equilibrium

228929 The reaction,
$2 \mathbf{A}(\mathrm{g})+\mathbf{B}(\mathbf{g}) \rightleftharpoons \quad 3 \mathbf{C}(\mathbf{g})+\mathbf{D}(\mathrm{g})$
Is begain with the concentrations of $A$ and $B$ both at an initial value of $1.00 \mathrm{M}$. When equilibrium is reached, the concentration of $D$ is measured and found to be $0.25 \mathrm{M}$. The value for the equilibrium constant for this reaction is given by the expression

1 $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$
2 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
3 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
4 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$
Chemical Equilibrium

228931 $\quad \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \quad 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$ $E_{\text {cell }}^{0}$ at $25{ }^{0} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is

1 $2.8 \times 10^{7}$
2 $5.2 \times 10^{8}$
3 $2.8 \times 10^{5}$
4 $5.2 \times 10^{4}$
Chemical Equilibrium

228932 The equilibrium constant for the equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a particular temperature is $2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$. The number of moles of $\mathrm{PCl}_{5}$ that must be taken in a onelitre flask at the same temperature to obtain a concentration of $0.20 \mathrm{~mol}$ of chlorine at equilibrium is

1 2.0
2 2.2
3 1.8
4 0.2
5 0.1
Chemical Equilibrium

228928 For the reaction,
$\mathbf{A}+\mathbf{B} \rightleftharpoons \mathbf{C}+\mathbf{D}$,
the initial concentrations of $A$ and $B$ are equal. The equilibrium concentration of $\mathrm{C}$ is two times the equilibrium concentration of $A$. The equilibrium constant is

1 4
2 $\frac{1}{4}$
3 9
4 $\frac{1}{9}$
Chemical Equilibrium

228929 The reaction,
$2 \mathbf{A}(\mathrm{g})+\mathbf{B}(\mathbf{g}) \rightleftharpoons \quad 3 \mathbf{C}(\mathbf{g})+\mathbf{D}(\mathrm{g})$
Is begain with the concentrations of $A$ and $B$ both at an initial value of $1.00 \mathrm{M}$. When equilibrium is reached, the concentration of $D$ is measured and found to be $0.25 \mathrm{M}$. The value for the equilibrium constant for this reaction is given by the expression

1 $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$
2 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
3 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
4 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$
Chemical Equilibrium

228931 $\quad \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \quad 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$ $E_{\text {cell }}^{0}$ at $25{ }^{0} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is

1 $2.8 \times 10^{7}$
2 $5.2 \times 10^{8}$
3 $2.8 \times 10^{5}$
4 $5.2 \times 10^{4}$
Chemical Equilibrium

228932 The equilibrium constant for the equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a particular temperature is $2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$. The number of moles of $\mathrm{PCl}_{5}$ that must be taken in a onelitre flask at the same temperature to obtain a concentration of $0.20 \mathrm{~mol}$ of chlorine at equilibrium is

1 2.0
2 2.2
3 1.8
4 0.2
5 0.1
Chemical Equilibrium

228928 For the reaction,
$\mathbf{A}+\mathbf{B} \rightleftharpoons \mathbf{C}+\mathbf{D}$,
the initial concentrations of $A$ and $B$ are equal. The equilibrium concentration of $\mathrm{C}$ is two times the equilibrium concentration of $A$. The equilibrium constant is

1 4
2 $\frac{1}{4}$
3 9
4 $\frac{1}{9}$
Chemical Equilibrium

228929 The reaction,
$2 \mathbf{A}(\mathrm{g})+\mathbf{B}(\mathbf{g}) \rightleftharpoons \quad 3 \mathbf{C}(\mathbf{g})+\mathbf{D}(\mathrm{g})$
Is begain with the concentrations of $A$ and $B$ both at an initial value of $1.00 \mathrm{M}$. When equilibrium is reached, the concentration of $D$ is measured and found to be $0.25 \mathrm{M}$. The value for the equilibrium constant for this reaction is given by the expression

1 $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$
2 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
3 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
4 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$
Chemical Equilibrium

228931 $\quad \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \quad 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$ $E_{\text {cell }}^{0}$ at $25{ }^{0} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is

1 $2.8 \times 10^{7}$
2 $5.2 \times 10^{8}$
3 $2.8 \times 10^{5}$
4 $5.2 \times 10^{4}$
Chemical Equilibrium

228932 The equilibrium constant for the equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a particular temperature is $2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$. The number of moles of $\mathrm{PCl}_{5}$ that must be taken in a onelitre flask at the same temperature to obtain a concentration of $0.20 \mathrm{~mol}$ of chlorine at equilibrium is

1 2.0
2 2.2
3 1.8
4 0.2
5 0.1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

228928 For the reaction,
$\mathbf{A}+\mathbf{B} \rightleftharpoons \mathbf{C}+\mathbf{D}$,
the initial concentrations of $A$ and $B$ are equal. The equilibrium concentration of $\mathrm{C}$ is two times the equilibrium concentration of $A$. The equilibrium constant is

1 4
2 $\frac{1}{4}$
3 9
4 $\frac{1}{9}$
Chemical Equilibrium

228929 The reaction,
$2 \mathbf{A}(\mathrm{g})+\mathbf{B}(\mathbf{g}) \rightleftharpoons \quad 3 \mathbf{C}(\mathbf{g})+\mathbf{D}(\mathrm{g})$
Is begain with the concentrations of $A$ and $B$ both at an initial value of $1.00 \mathrm{M}$. When equilibrium is reached, the concentration of $D$ is measured and found to be $0.25 \mathrm{M}$. The value for the equilibrium constant for this reaction is given by the expression

1 $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$
2 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
3 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
4 $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$
Chemical Equilibrium

228931 $\quad \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \quad 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$ $E_{\text {cell }}^{0}$ at $25{ }^{0} \mathrm{C}$ for the cell is $0.22 \mathrm{~V}$. The equilibrium constant at $25^{\circ} \mathrm{C}$ is

1 $2.8 \times 10^{7}$
2 $5.2 \times 10^{8}$
3 $2.8 \times 10^{5}$
4 $5.2 \times 10^{4}$
Chemical Equilibrium

228932 The equilibrium constant for the equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a particular temperature is $2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$. The number of moles of $\mathrm{PCl}_{5}$ that must be taken in a onelitre flask at the same temperature to obtain a concentration of $0.20 \mathrm{~mol}$ of chlorine at equilibrium is

1 2.0
2 2.2
3 1.8
4 0.2
5 0.1