00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228916 2 moles of $\mathbf{P C l}_{5}$ is decomposed in 2 litre closed vessel. At Equilibrium the percentage decomposition of $\mathrm{PCl}_{5}$ is $40 \%$. The value of Equilibrium constant is:

1 0.267
2 0.0267
3 2.67
4 26.7
Chemical Equilibrium

228918 The equilibrium constants for the following two reactions at $298 \mathrm{~K}$ are given below
$2A\rightleftharpoons B+C;K_{1}=16$
$\begin{aligned}
& \mathbf{2 B}+\mathbf{C} \rightleftharpoons 2 \mathrm{X} ; \mathbf{K}_{\mathbf{2}}=\mathbf{2 5}
\end{aligned}$
What is the value of $K$ for the reaction,
$A+\frac{1}{2} B \rightleftharpoons X \text { at } 298 K \text { ? }$

1 $\frac{1}{5}$
2 $\frac{1}{40}$
3 $\frac{5}{4}$
4 $\frac{4}{5}$
5 20
Chemical Equilibrium

228919 1 mole of $\mathrm{HI}$ is heated in a closed container of capacity of $2 \mathrm{~L}$. At equilibrium half a mole of $\mathrm{HI}$ is dissociated. The equilibrium constant of the reaction is

1 0.25
2 0.35
3 1
4 0.5
Chemical Equilibrium

228920 Consider the following gaseous equilibria with equilibrium constants $K_{1}$ and $K_{2}$ respectively.
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constants are related as

1 $\mathrm{K}_{1}^{2}=\frac{1}{\mathrm{~K}_{2}}$
2 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}^{2}$
3 $\mathrm{K}_{2}=\frac{2}{\mathrm{~K}_{1}^{2}}$
4 $\mathrm{K}_{2}^{2}=\frac{1}{\mathrm{~K}_{1}}$
Chemical Equilibrium

228921 Equilibrium constants $K_{1}$ and $K_{2}$ for the following equilibria
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons{\mathrm{K}} \mathrm{NO}_{2}(\mathrm{~g})$
and $2 \mathrm{NO}_2(\mathrm{~g})$ \rightleftharpoons $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_2(\mathrm{~g})$ are related
as

1 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
3 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{2}$
4 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}$
Chemical Equilibrium

228916 2 moles of $\mathbf{P C l}_{5}$ is decomposed in 2 litre closed vessel. At Equilibrium the percentage decomposition of $\mathrm{PCl}_{5}$ is $40 \%$. The value of Equilibrium constant is:

1 0.267
2 0.0267
3 2.67
4 26.7
Chemical Equilibrium

228918 The equilibrium constants for the following two reactions at $298 \mathrm{~K}$ are given below
$2A\rightleftharpoons B+C;K_{1}=16$
$\begin{aligned}
& \mathbf{2 B}+\mathbf{C} \rightleftharpoons 2 \mathrm{X} ; \mathbf{K}_{\mathbf{2}}=\mathbf{2 5}
\end{aligned}$
What is the value of $K$ for the reaction,
$A+\frac{1}{2} B \rightleftharpoons X \text { at } 298 K \text { ? }$

1 $\frac{1}{5}$
2 $\frac{1}{40}$
3 $\frac{5}{4}$
4 $\frac{4}{5}$
5 20
Chemical Equilibrium

228919 1 mole of $\mathrm{HI}$ is heated in a closed container of capacity of $2 \mathrm{~L}$. At equilibrium half a mole of $\mathrm{HI}$ is dissociated. The equilibrium constant of the reaction is

1 0.25
2 0.35
3 1
4 0.5
Chemical Equilibrium

228920 Consider the following gaseous equilibria with equilibrium constants $K_{1}$ and $K_{2}$ respectively.
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constants are related as

1 $\mathrm{K}_{1}^{2}=\frac{1}{\mathrm{~K}_{2}}$
2 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}^{2}$
3 $\mathrm{K}_{2}=\frac{2}{\mathrm{~K}_{1}^{2}}$
4 $\mathrm{K}_{2}^{2}=\frac{1}{\mathrm{~K}_{1}}$
Chemical Equilibrium

228921 Equilibrium constants $K_{1}$ and $K_{2}$ for the following equilibria
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons{\mathrm{K}} \mathrm{NO}_{2}(\mathrm{~g})$
and $2 \mathrm{NO}_2(\mathrm{~g})$ \rightleftharpoons $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_2(\mathrm{~g})$ are related
as

1 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
3 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{2}$
4 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}$
Chemical Equilibrium

228916 2 moles of $\mathbf{P C l}_{5}$ is decomposed in 2 litre closed vessel. At Equilibrium the percentage decomposition of $\mathrm{PCl}_{5}$ is $40 \%$. The value of Equilibrium constant is:

1 0.267
2 0.0267
3 2.67
4 26.7
Chemical Equilibrium

228918 The equilibrium constants for the following two reactions at $298 \mathrm{~K}$ are given below
$2A\rightleftharpoons B+C;K_{1}=16$
$\begin{aligned}
& \mathbf{2 B}+\mathbf{C} \rightleftharpoons 2 \mathrm{X} ; \mathbf{K}_{\mathbf{2}}=\mathbf{2 5}
\end{aligned}$
What is the value of $K$ for the reaction,
$A+\frac{1}{2} B \rightleftharpoons X \text { at } 298 K \text { ? }$

1 $\frac{1}{5}$
2 $\frac{1}{40}$
3 $\frac{5}{4}$
4 $\frac{4}{5}$
5 20
Chemical Equilibrium

228919 1 mole of $\mathrm{HI}$ is heated in a closed container of capacity of $2 \mathrm{~L}$. At equilibrium half a mole of $\mathrm{HI}$ is dissociated. The equilibrium constant of the reaction is

1 0.25
2 0.35
3 1
4 0.5
Chemical Equilibrium

228920 Consider the following gaseous equilibria with equilibrium constants $K_{1}$ and $K_{2}$ respectively.
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constants are related as

1 $\mathrm{K}_{1}^{2}=\frac{1}{\mathrm{~K}_{2}}$
2 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}^{2}$
3 $\mathrm{K}_{2}=\frac{2}{\mathrm{~K}_{1}^{2}}$
4 $\mathrm{K}_{2}^{2}=\frac{1}{\mathrm{~K}_{1}}$
Chemical Equilibrium

228921 Equilibrium constants $K_{1}$ and $K_{2}$ for the following equilibria
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons{\mathrm{K}} \mathrm{NO}_{2}(\mathrm{~g})$
and $2 \mathrm{NO}_2(\mathrm{~g})$ \rightleftharpoons $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_2(\mathrm{~g})$ are related
as

1 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
3 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{2}$
4 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

228916 2 moles of $\mathbf{P C l}_{5}$ is decomposed in 2 litre closed vessel. At Equilibrium the percentage decomposition of $\mathrm{PCl}_{5}$ is $40 \%$. The value of Equilibrium constant is:

1 0.267
2 0.0267
3 2.67
4 26.7
Chemical Equilibrium

228918 The equilibrium constants for the following two reactions at $298 \mathrm{~K}$ are given below
$2A\rightleftharpoons B+C;K_{1}=16$
$\begin{aligned}
& \mathbf{2 B}+\mathbf{C} \rightleftharpoons 2 \mathrm{X} ; \mathbf{K}_{\mathbf{2}}=\mathbf{2 5}
\end{aligned}$
What is the value of $K$ for the reaction,
$A+\frac{1}{2} B \rightleftharpoons X \text { at } 298 K \text { ? }$

1 $\frac{1}{5}$
2 $\frac{1}{40}$
3 $\frac{5}{4}$
4 $\frac{4}{5}$
5 20
Chemical Equilibrium

228919 1 mole of $\mathrm{HI}$ is heated in a closed container of capacity of $2 \mathrm{~L}$. At equilibrium half a mole of $\mathrm{HI}$ is dissociated. The equilibrium constant of the reaction is

1 0.25
2 0.35
3 1
4 0.5
Chemical Equilibrium

228920 Consider the following gaseous equilibria with equilibrium constants $K_{1}$ and $K_{2}$ respectively.
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constants are related as

1 $\mathrm{K}_{1}^{2}=\frac{1}{\mathrm{~K}_{2}}$
2 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}^{2}$
3 $\mathrm{K}_{2}=\frac{2}{\mathrm{~K}_{1}^{2}}$
4 $\mathrm{K}_{2}^{2}=\frac{1}{\mathrm{~K}_{1}}$
Chemical Equilibrium

228921 Equilibrium constants $K_{1}$ and $K_{2}$ for the following equilibria
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons{\mathrm{K}} \mathrm{NO}_{2}(\mathrm{~g})$
and $2 \mathrm{NO}_2(\mathrm{~g})$ \rightleftharpoons $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_2(\mathrm{~g})$ are related
as

1 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
3 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{2}$
4 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}$
Chemical Equilibrium

228916 2 moles of $\mathbf{P C l}_{5}$ is decomposed in 2 litre closed vessel. At Equilibrium the percentage decomposition of $\mathrm{PCl}_{5}$ is $40 \%$. The value of Equilibrium constant is:

1 0.267
2 0.0267
3 2.67
4 26.7
Chemical Equilibrium

228918 The equilibrium constants for the following two reactions at $298 \mathrm{~K}$ are given below
$2A\rightleftharpoons B+C;K_{1}=16$
$\begin{aligned}
& \mathbf{2 B}+\mathbf{C} \rightleftharpoons 2 \mathrm{X} ; \mathbf{K}_{\mathbf{2}}=\mathbf{2 5}
\end{aligned}$
What is the value of $K$ for the reaction,
$A+\frac{1}{2} B \rightleftharpoons X \text { at } 298 K \text { ? }$

1 $\frac{1}{5}$
2 $\frac{1}{40}$
3 $\frac{5}{4}$
4 $\frac{4}{5}$
5 20
Chemical Equilibrium

228919 1 mole of $\mathrm{HI}$ is heated in a closed container of capacity of $2 \mathrm{~L}$. At equilibrium half a mole of $\mathrm{HI}$ is dissociated. The equilibrium constant of the reaction is

1 0.25
2 0.35
3 1
4 0.5
Chemical Equilibrium

228920 Consider the following gaseous equilibria with equilibrium constants $K_{1}$ and $K_{2}$ respectively.
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constants are related as

1 $\mathrm{K}_{1}^{2}=\frac{1}{\mathrm{~K}_{2}}$
2 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}^{2}$
3 $\mathrm{K}_{2}=\frac{2}{\mathrm{~K}_{1}^{2}}$
4 $\mathrm{K}_{2}^{2}=\frac{1}{\mathrm{~K}_{1}}$
Chemical Equilibrium

228921 Equilibrium constants $K_{1}$ and $K_{2}$ for the following equilibria
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons{\mathrm{K}} \mathrm{NO}_{2}(\mathrm{~g})$
and $2 \mathrm{NO}_2(\mathrm{~g})$ \rightleftharpoons $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_2(\mathrm{~g})$ are related
as

1 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}}$
2 $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
3 $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{2}$
4 $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}$