05. Gibbs Energy Change and Equilibrium
Thermodynamics

273096 Which of the following relation is incorrect?

1 $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \operatorname{lnk}$
2 $\mathrm{k}=\mathrm{e}^{\frac{-\Delta \mathrm{G}^{\circ}}{R T}}$
3 $\mathrm{e}^{\frac{-\Delta G^{\circ}}{2.303 R T}}$
4 $\operatorname{lnk}=-\frac{\Delta \mathrm{G}^{\circ}}{\mathrm{RT}}$
Thermodynamics

273097 The reaction, $A+B \to C+D$, is studied in $1 \mathbf{L}$ vessel at $250^{\circ} \mathrm{C}$. The initial concentration of $A$ was $3 n$ and that of $B$ was $n$. When equilibrium was attained, equilibrium concentration of $C$ was found to be equal to the equilibrium concentration $B$, then concentration of $D$ at equilibrium will be

1 $\frac{\mathrm{n}}{2}$
2 $\left(3 n-\frac{1}{2}\right)$
3 $\left(\mathrm{n}-\frac{\mathrm{n}}{2}\right) \mathrm{n}$
4 $\mathrm{n}$
Thermodynamics

273098 What will be the value of $\Delta G$ and $\Delta G^0$ for the reaction, $\mathrm{A}+\mathrm{B} \square \mathrm{C}+\mathrm{D}$ at $27^{\circ} \mathrm{C}$ for which $\mathrm{K}=$ $10^2$ ?

1 $\Delta \mathrm{G}=0 ; \Delta \mathrm{G}^0=-11.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{G}=0 ; \Delta \mathrm{G}^0=11.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{G}=-11.48 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{G}^0=0$
4 $\Delta \mathrm{G}=11.48 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{G}^0=0$
Thermodynamics

273095 In which of the following reactions, standard reaction entropy change $\left(\Delta S^0\right)$ is positive and standard Gibbs energy change $\left(\Delta G^0\right)$ decrease sharply with increasing temperature?

1 $\mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
2 $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2$ (g)
$\Delta \mathrm{n}_{\mathrm{g}}=1-\frac{3}{2}=\frac{-1}{2}$
3 $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_2$ (g) $\rightarrow \mathrm{MgO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}}=\frac{-1}{2}$
4 $\frac{1}{2} \mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}} \frac{1}{2}-\frac{1}{2}=0$
Thermodynamics

273096 Which of the following relation is incorrect?

1 $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \operatorname{lnk}$
2 $\mathrm{k}=\mathrm{e}^{\frac{-\Delta \mathrm{G}^{\circ}}{R T}}$
3 $\mathrm{e}^{\frac{-\Delta G^{\circ}}{2.303 R T}}$
4 $\operatorname{lnk}=-\frac{\Delta \mathrm{G}^{\circ}}{\mathrm{RT}}$
Thermodynamics

273097 The reaction, $A+B \to C+D$, is studied in $1 \mathbf{L}$ vessel at $250^{\circ} \mathrm{C}$. The initial concentration of $A$ was $3 n$ and that of $B$ was $n$. When equilibrium was attained, equilibrium concentration of $C$ was found to be equal to the equilibrium concentration $B$, then concentration of $D$ at equilibrium will be

1 $\frac{\mathrm{n}}{2}$
2 $\left(3 n-\frac{1}{2}\right)$
3 $\left(\mathrm{n}-\frac{\mathrm{n}}{2}\right) \mathrm{n}$
4 $\mathrm{n}$
Thermodynamics

273098 What will be the value of $\Delta G$ and $\Delta G^0$ for the reaction, $\mathrm{A}+\mathrm{B} \square \mathrm{C}+\mathrm{D}$ at $27^{\circ} \mathrm{C}$ for which $\mathrm{K}=$ $10^2$ ?

1 $\Delta \mathrm{G}=0 ; \Delta \mathrm{G}^0=-11.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{G}=0 ; \Delta \mathrm{G}^0=11.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{G}=-11.48 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{G}^0=0$
4 $\Delta \mathrm{G}=11.48 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{G}^0=0$
Thermodynamics

273095 In which of the following reactions, standard reaction entropy change $\left(\Delta S^0\right)$ is positive and standard Gibbs energy change $\left(\Delta G^0\right)$ decrease sharply with increasing temperature?

1 $\mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
2 $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2$ (g)
$\Delta \mathrm{n}_{\mathrm{g}}=1-\frac{3}{2}=\frac{-1}{2}$
3 $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_2$ (g) $\rightarrow \mathrm{MgO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}}=\frac{-1}{2}$
4 $\frac{1}{2} \mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}} \frac{1}{2}-\frac{1}{2}=0$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

273096 Which of the following relation is incorrect?

1 $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \operatorname{lnk}$
2 $\mathrm{k}=\mathrm{e}^{\frac{-\Delta \mathrm{G}^{\circ}}{R T}}$
3 $\mathrm{e}^{\frac{-\Delta G^{\circ}}{2.303 R T}}$
4 $\operatorname{lnk}=-\frac{\Delta \mathrm{G}^{\circ}}{\mathrm{RT}}$
Thermodynamics

273097 The reaction, $A+B \to C+D$, is studied in $1 \mathbf{L}$ vessel at $250^{\circ} \mathrm{C}$. The initial concentration of $A$ was $3 n$ and that of $B$ was $n$. When equilibrium was attained, equilibrium concentration of $C$ was found to be equal to the equilibrium concentration $B$, then concentration of $D$ at equilibrium will be

1 $\frac{\mathrm{n}}{2}$
2 $\left(3 n-\frac{1}{2}\right)$
3 $\left(\mathrm{n}-\frac{\mathrm{n}}{2}\right) \mathrm{n}$
4 $\mathrm{n}$
Thermodynamics

273098 What will be the value of $\Delta G$ and $\Delta G^0$ for the reaction, $\mathrm{A}+\mathrm{B} \square \mathrm{C}+\mathrm{D}$ at $27^{\circ} \mathrm{C}$ for which $\mathrm{K}=$ $10^2$ ?

1 $\Delta \mathrm{G}=0 ; \Delta \mathrm{G}^0=-11.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{G}=0 ; \Delta \mathrm{G}^0=11.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{G}=-11.48 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{G}^0=0$
4 $\Delta \mathrm{G}=11.48 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{G}^0=0$
Thermodynamics

273095 In which of the following reactions, standard reaction entropy change $\left(\Delta S^0\right)$ is positive and standard Gibbs energy change $\left(\Delta G^0\right)$ decrease sharply with increasing temperature?

1 $\mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
2 $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2$ (g)
$\Delta \mathrm{n}_{\mathrm{g}}=1-\frac{3}{2}=\frac{-1}{2}$
3 $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_2$ (g) $\rightarrow \mathrm{MgO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}}=\frac{-1}{2}$
4 $\frac{1}{2} \mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}} \frac{1}{2}-\frac{1}{2}=0$
Thermodynamics

273096 Which of the following relation is incorrect?

1 $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \operatorname{lnk}$
2 $\mathrm{k}=\mathrm{e}^{\frac{-\Delta \mathrm{G}^{\circ}}{R T}}$
3 $\mathrm{e}^{\frac{-\Delta G^{\circ}}{2.303 R T}}$
4 $\operatorname{lnk}=-\frac{\Delta \mathrm{G}^{\circ}}{\mathrm{RT}}$
Thermodynamics

273097 The reaction, $A+B \to C+D$, is studied in $1 \mathbf{L}$ vessel at $250^{\circ} \mathrm{C}$. The initial concentration of $A$ was $3 n$ and that of $B$ was $n$. When equilibrium was attained, equilibrium concentration of $C$ was found to be equal to the equilibrium concentration $B$, then concentration of $D$ at equilibrium will be

1 $\frac{\mathrm{n}}{2}$
2 $\left(3 n-\frac{1}{2}\right)$
3 $\left(\mathrm{n}-\frac{\mathrm{n}}{2}\right) \mathrm{n}$
4 $\mathrm{n}$
Thermodynamics

273098 What will be the value of $\Delta G$ and $\Delta G^0$ for the reaction, $\mathrm{A}+\mathrm{B} \square \mathrm{C}+\mathrm{D}$ at $27^{\circ} \mathrm{C}$ for which $\mathrm{K}=$ $10^2$ ?

1 $\Delta \mathrm{G}=0 ; \Delta \mathrm{G}^0=-11.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $\Delta \mathrm{G}=0 ; \Delta \mathrm{G}^0=11.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $\Delta \mathrm{G}=-11.48 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{G}^0=0$
4 $\Delta \mathrm{G}=11.48 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{G}^0=0$
Thermodynamics

273095 In which of the following reactions, standard reaction entropy change $\left(\Delta S^0\right)$ is positive and standard Gibbs energy change $\left(\Delta G^0\right)$ decrease sharply with increasing temperature?

1 $\mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
2 $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2$ (g)
$\Delta \mathrm{n}_{\mathrm{g}}=1-\frac{3}{2}=\frac{-1}{2}$
3 $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_2$ (g) $\rightarrow \mathrm{MgO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}}=\frac{-1}{2}$
4 $\frac{1}{2} \mathrm{C}_{\text {(graphite) }}+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}} \frac{1}{2}-\frac{1}{2}=0$