NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Thermodynamics
273087
The equilibrium constant for a reaction is 10 . $\Delta G^0$ will be the value of $\Delta G^{\ominus}\left(R=8.314 \mathrm{JK}^{-1}\right.$ $\left.\mathbf{m o l}^{-1}, \mathbf{T}=\mathbf{3 0 0} \mathbf{K}\right)$
For spontaneous process $\Delta \mathrm{S}=+\mathrm{ve}$ (Because of disorderness or randomness) For a process to be spontaneous $\Delta \mathrm{G}<0$.
MHT CET-2016
Thermodynamics
273085
In equilibrium state the value of $\Delta G$ is
1 zero
2 negative
3 positive
4 may be negative or positive
Explanation:
In the equilibrium state the value of $\Delta \mathrm{G}$ is zero.
Karnataka-CET-2007
Thermodynamics
273081
A process will be spontaneous at all temperature if
1 $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$
2 $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
3 $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$
4 $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}>0$
Explanation:
For spontaneous process at all temperature. $\Delta \mathrm{G}<0$ and $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
273087
The equilibrium constant for a reaction is 10 . $\Delta G^0$ will be the value of $\Delta G^{\ominus}\left(R=8.314 \mathrm{JK}^{-1}\right.$ $\left.\mathbf{m o l}^{-1}, \mathbf{T}=\mathbf{3 0 0} \mathbf{K}\right)$
For spontaneous process $\Delta \mathrm{S}=+\mathrm{ve}$ (Because of disorderness or randomness) For a process to be spontaneous $\Delta \mathrm{G}<0$.
MHT CET-2016
Thermodynamics
273085
In equilibrium state the value of $\Delta G$ is
1 zero
2 negative
3 positive
4 may be negative or positive
Explanation:
In the equilibrium state the value of $\Delta \mathrm{G}$ is zero.
Karnataka-CET-2007
Thermodynamics
273081
A process will be spontaneous at all temperature if
1 $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$
2 $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
3 $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$
4 $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}>0$
Explanation:
For spontaneous process at all temperature. $\Delta \mathrm{G}<0$ and $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
273087
The equilibrium constant for a reaction is 10 . $\Delta G^0$ will be the value of $\Delta G^{\ominus}\left(R=8.314 \mathrm{JK}^{-1}\right.$ $\left.\mathbf{m o l}^{-1}, \mathbf{T}=\mathbf{3 0 0} \mathbf{K}\right)$
For spontaneous process $\Delta \mathrm{S}=+\mathrm{ve}$ (Because of disorderness or randomness) For a process to be spontaneous $\Delta \mathrm{G}<0$.
MHT CET-2016
Thermodynamics
273085
In equilibrium state the value of $\Delta G$ is
1 zero
2 negative
3 positive
4 may be negative or positive
Explanation:
In the equilibrium state the value of $\Delta \mathrm{G}$ is zero.
Karnataka-CET-2007
Thermodynamics
273081
A process will be spontaneous at all temperature if
1 $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$
2 $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
3 $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$
4 $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}>0$
Explanation:
For spontaneous process at all temperature. $\Delta \mathrm{G}<0$ and $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
273087
The equilibrium constant for a reaction is 10 . $\Delta G^0$ will be the value of $\Delta G^{\ominus}\left(R=8.314 \mathrm{JK}^{-1}\right.$ $\left.\mathbf{m o l}^{-1}, \mathbf{T}=\mathbf{3 0 0} \mathbf{K}\right)$
For spontaneous process $\Delta \mathrm{S}=+\mathrm{ve}$ (Because of disorderness or randomness) For a process to be spontaneous $\Delta \mathrm{G}<0$.
MHT CET-2016
Thermodynamics
273085
In equilibrium state the value of $\Delta G$ is
1 zero
2 negative
3 positive
4 may be negative or positive
Explanation:
In the equilibrium state the value of $\Delta \mathrm{G}$ is zero.
Karnataka-CET-2007
Thermodynamics
273081
A process will be spontaneous at all temperature if
1 $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$
2 $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
3 $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$
4 $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}>0$
Explanation:
For spontaneous process at all temperature. $\Delta \mathrm{G}<0$ and $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$