04. Bond Energy
Thermodynamics

273036 The energy that opposes dissolution of a solvent is

1 hydration energy
2 lattice energy
3 internal energy
4 bond energy
Thermodynamics

273035 The following is endothermic reaction

1 Decomposition of water
2 Conversion of graphite to diamond
3 Dehydrogenation of ethane to ethylene
4 All of the above
Thermodynamics

273015 Bond enthalpies of $A_2, B_2$ and $A B$ are in the ratio $2: 1: 2$. If bond enthalpy of formation of $A B$ is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond enthalpy of $B_2$ is

1 $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

273016 Which one of the following arrangements shows the bonds $\mathrm{H}-\mathrm{H}, \mathrm{C}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{Si}$ in order of increasing bond energy?

1 $\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}$
2 $\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}$
3 $\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}$
4 $\mathrm{H}-\mathrm{H}<\mathrm{C}-\mathrm{C}<\mathrm{Si}-\mathrm{Si}$
Thermodynamics

273017 If the mass defect of a nuclide is $3.32 \times 10^{-26} \mathrm{~g}$, its binding energy is MeV.

1 9.31
2 18.62
3 27.93
4 37.24
Thermodynamics

273036 The energy that opposes dissolution of a solvent is

1 hydration energy
2 lattice energy
3 internal energy
4 bond energy
Thermodynamics

273035 The following is endothermic reaction

1 Decomposition of water
2 Conversion of graphite to diamond
3 Dehydrogenation of ethane to ethylene
4 All of the above
Thermodynamics

273015 Bond enthalpies of $A_2, B_2$ and $A B$ are in the ratio $2: 1: 2$. If bond enthalpy of formation of $A B$ is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond enthalpy of $B_2$ is

1 $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

273016 Which one of the following arrangements shows the bonds $\mathrm{H}-\mathrm{H}, \mathrm{C}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{Si}$ in order of increasing bond energy?

1 $\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}$
2 $\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}$
3 $\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}$
4 $\mathrm{H}-\mathrm{H}<\mathrm{C}-\mathrm{C}<\mathrm{Si}-\mathrm{Si}$
Thermodynamics

273017 If the mass defect of a nuclide is $3.32 \times 10^{-26} \mathrm{~g}$, its binding energy is MeV.

1 9.31
2 18.62
3 27.93
4 37.24
Thermodynamics

273036 The energy that opposes dissolution of a solvent is

1 hydration energy
2 lattice energy
3 internal energy
4 bond energy
Thermodynamics

273035 The following is endothermic reaction

1 Decomposition of water
2 Conversion of graphite to diamond
3 Dehydrogenation of ethane to ethylene
4 All of the above
Thermodynamics

273015 Bond enthalpies of $A_2, B_2$ and $A B$ are in the ratio $2: 1: 2$. If bond enthalpy of formation of $A B$ is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond enthalpy of $B_2$ is

1 $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

273016 Which one of the following arrangements shows the bonds $\mathrm{H}-\mathrm{H}, \mathrm{C}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{Si}$ in order of increasing bond energy?

1 $\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}$
2 $\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}$
3 $\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}$
4 $\mathrm{H}-\mathrm{H}<\mathrm{C}-\mathrm{C}<\mathrm{Si}-\mathrm{Si}$
Thermodynamics

273017 If the mass defect of a nuclide is $3.32 \times 10^{-26} \mathrm{~g}$, its binding energy is MeV.

1 9.31
2 18.62
3 27.93
4 37.24
Thermodynamics

273036 The energy that opposes dissolution of a solvent is

1 hydration energy
2 lattice energy
3 internal energy
4 bond energy
Thermodynamics

273035 The following is endothermic reaction

1 Decomposition of water
2 Conversion of graphite to diamond
3 Dehydrogenation of ethane to ethylene
4 All of the above
Thermodynamics

273015 Bond enthalpies of $A_2, B_2$ and $A B$ are in the ratio $2: 1: 2$. If bond enthalpy of formation of $A B$ is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond enthalpy of $B_2$ is

1 $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

273016 Which one of the following arrangements shows the bonds $\mathrm{H}-\mathrm{H}, \mathrm{C}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{Si}$ in order of increasing bond energy?

1 $\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}$
2 $\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}$
3 $\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}$
4 $\mathrm{H}-\mathrm{H}<\mathrm{C}-\mathrm{C}<\mathrm{Si}-\mathrm{Si}$
Thermodynamics

273017 If the mass defect of a nuclide is $3.32 \times 10^{-26} \mathrm{~g}$, its binding energy is MeV.

1 9.31
2 18.62
3 27.93
4 37.24
Thermodynamics

273036 The energy that opposes dissolution of a solvent is

1 hydration energy
2 lattice energy
3 internal energy
4 bond energy
Thermodynamics

273035 The following is endothermic reaction

1 Decomposition of water
2 Conversion of graphite to diamond
3 Dehydrogenation of ethane to ethylene
4 All of the above
Thermodynamics

273015 Bond enthalpies of $A_2, B_2$ and $A B$ are in the ratio $2: 1: 2$. If bond enthalpy of formation of $A B$ is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond enthalpy of $B_2$ is

1 $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

273016 Which one of the following arrangements shows the bonds $\mathrm{H}-\mathrm{H}, \mathrm{C}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{Si}$ in order of increasing bond energy?

1 $\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}$
2 $\mathrm{C}-\mathrm{C}<\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}$
3 $\mathrm{H}-\mathrm{H}<\mathrm{Si}-\mathrm{Si}<\mathrm{C}-\mathrm{C}$
4 $\mathrm{H}-\mathrm{H}<\mathrm{C}-\mathrm{C}<\mathrm{Si}-\mathrm{Si}$
Thermodynamics

273017 If the mass defect of a nuclide is $3.32 \times 10^{-26} \mathrm{~g}$, its binding energy is MeV.

1 9.31
2 18.62
3 27.93
4 37.24