03. Heat of Reaction
Thermodynamics

272815 Given: $2 \mathrm{C}(\mathrm{s})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})$;
$\Delta \mathbf{H}=-787 \mathbf{k J}$

$\begin{aligned}
& \mathrm{H}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=-286 \mathrm{~kJ} \\
& \mathrm{C}_2 \mathrm{H}_2(\mathrm{~g})+2 \frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \\
& ; \Delta \mathrm{H}=-1310 \mathrm{~kJ} \\
&
\end{aligned}$
The heat of formation of acetylene is

1 $-1802 \mathrm{~kJ}$
2 $+1802 \mathrm{~kJ}$
3 $+237 \mathrm{~kJ}$
4 $-800 \mathrm{~kJ}$
Thermodynamics

272767 The dissociation energy of $\mathrm{CH}_4$ is $360 \mathrm{kcal} \mathrm{mol}^{-}$ 1 and that of ethane is $620 \mathrm{kcal} \mathrm{mol}^{-1}$. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is :

1 $260 \mathrm{kcal}$
2 $980 \mathrm{kcal}$
3 $90 \mathrm{kcal}$
4 $80 \mathrm{kcal}$
Thermodynamics

272769 What is the amount of heat is released when $8.17 \mathrm{~g}$ of $\mathrm{Al}$ (s) is converted to $\mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}$ via the reaction $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ ?
[For the reaction, $\Delta \mathrm{H}=-1676 \mathrm{~kJ} / \mathrm{mol}$, atomic mass of $\mathrm{Al}=27$

1 $134 \mathrm{~kJ}$
2 $254 \mathrm{~kJ}$
3 $268 \mathrm{~kJ}$
4 $1.01 \times 10^3 \mathrm{~kJ}$
Thermodynamics

272771 The bond enthalpy of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ are 435,243 and $431 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$ would be:

1 $92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

272772 Consider the following reactions:
$\mathrm{C}+\mathrm{O}_2 \rightarrow \mathrm{CO}_2 ; \quad \Delta \mathrm{H}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{H}_2+\mathrm{O}_2 \rightarrow 2 \mathrm{H}_2 \mathrm{O} ; \quad \Delta \mathrm{H}=-570 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_2+2 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CH}_4+2 \mathrm{O}_2 \Delta \mathrm{H}=890 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The heat of formation of methane is

1 $-180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-1060 \mathrm{~kJ} \mathrm{~mol} \mathrm{kl}^{-1}$
3 $-720 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-80 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

272815 Given: $2 \mathrm{C}(\mathrm{s})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})$;
$\Delta \mathbf{H}=-787 \mathbf{k J}$

$\begin{aligned}
& \mathrm{H}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=-286 \mathrm{~kJ} \\
& \mathrm{C}_2 \mathrm{H}_2(\mathrm{~g})+2 \frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \\
& ; \Delta \mathrm{H}=-1310 \mathrm{~kJ} \\
&
\end{aligned}$
The heat of formation of acetylene is

1 $-1802 \mathrm{~kJ}$
2 $+1802 \mathrm{~kJ}$
3 $+237 \mathrm{~kJ}$
4 $-800 \mathrm{~kJ}$
Thermodynamics

272767 The dissociation energy of $\mathrm{CH}_4$ is $360 \mathrm{kcal} \mathrm{mol}^{-}$ 1 and that of ethane is $620 \mathrm{kcal} \mathrm{mol}^{-1}$. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is :

1 $260 \mathrm{kcal}$
2 $980 \mathrm{kcal}$
3 $90 \mathrm{kcal}$
4 $80 \mathrm{kcal}$
Thermodynamics

272769 What is the amount of heat is released when $8.17 \mathrm{~g}$ of $\mathrm{Al}$ (s) is converted to $\mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}$ via the reaction $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ ?
[For the reaction, $\Delta \mathrm{H}=-1676 \mathrm{~kJ} / \mathrm{mol}$, atomic mass of $\mathrm{Al}=27$

1 $134 \mathrm{~kJ}$
2 $254 \mathrm{~kJ}$
3 $268 \mathrm{~kJ}$
4 $1.01 \times 10^3 \mathrm{~kJ}$
Thermodynamics

272771 The bond enthalpy of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ are 435,243 and $431 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$ would be:

1 $92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

272772 Consider the following reactions:
$\mathrm{C}+\mathrm{O}_2 \rightarrow \mathrm{CO}_2 ; \quad \Delta \mathrm{H}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{H}_2+\mathrm{O}_2 \rightarrow 2 \mathrm{H}_2 \mathrm{O} ; \quad \Delta \mathrm{H}=-570 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_2+2 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CH}_4+2 \mathrm{O}_2 \Delta \mathrm{H}=890 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The heat of formation of methane is

1 $-180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-1060 \mathrm{~kJ} \mathrm{~mol} \mathrm{kl}^{-1}$
3 $-720 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-80 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

272815 Given: $2 \mathrm{C}(\mathrm{s})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})$;
$\Delta \mathbf{H}=-787 \mathbf{k J}$

$\begin{aligned}
& \mathrm{H}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=-286 \mathrm{~kJ} \\
& \mathrm{C}_2 \mathrm{H}_2(\mathrm{~g})+2 \frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \\
& ; \Delta \mathrm{H}=-1310 \mathrm{~kJ} \\
&
\end{aligned}$
The heat of formation of acetylene is

1 $-1802 \mathrm{~kJ}$
2 $+1802 \mathrm{~kJ}$
3 $+237 \mathrm{~kJ}$
4 $-800 \mathrm{~kJ}$
Thermodynamics

272767 The dissociation energy of $\mathrm{CH}_4$ is $360 \mathrm{kcal} \mathrm{mol}^{-}$ 1 and that of ethane is $620 \mathrm{kcal} \mathrm{mol}^{-1}$. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is :

1 $260 \mathrm{kcal}$
2 $980 \mathrm{kcal}$
3 $90 \mathrm{kcal}$
4 $80 \mathrm{kcal}$
Thermodynamics

272769 What is the amount of heat is released when $8.17 \mathrm{~g}$ of $\mathrm{Al}$ (s) is converted to $\mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}$ via the reaction $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ ?
[For the reaction, $\Delta \mathrm{H}=-1676 \mathrm{~kJ} / \mathrm{mol}$, atomic mass of $\mathrm{Al}=27$

1 $134 \mathrm{~kJ}$
2 $254 \mathrm{~kJ}$
3 $268 \mathrm{~kJ}$
4 $1.01 \times 10^3 \mathrm{~kJ}$
Thermodynamics

272771 The bond enthalpy of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ are 435,243 and $431 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$ would be:

1 $92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

272772 Consider the following reactions:
$\mathrm{C}+\mathrm{O}_2 \rightarrow \mathrm{CO}_2 ; \quad \Delta \mathrm{H}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{H}_2+\mathrm{O}_2 \rightarrow 2 \mathrm{H}_2 \mathrm{O} ; \quad \Delta \mathrm{H}=-570 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_2+2 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CH}_4+2 \mathrm{O}_2 \Delta \mathrm{H}=890 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The heat of formation of methane is

1 $-180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-1060 \mathrm{~kJ} \mathrm{~mol} \mathrm{kl}^{-1}$
3 $-720 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-80 \mathrm{~kJ} \mathrm{~mol}^{-1}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

272815 Given: $2 \mathrm{C}(\mathrm{s})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})$;
$\Delta \mathbf{H}=-787 \mathbf{k J}$

$\begin{aligned}
& \mathrm{H}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=-286 \mathrm{~kJ} \\
& \mathrm{C}_2 \mathrm{H}_2(\mathrm{~g})+2 \frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \\
& ; \Delta \mathrm{H}=-1310 \mathrm{~kJ} \\
&
\end{aligned}$
The heat of formation of acetylene is

1 $-1802 \mathrm{~kJ}$
2 $+1802 \mathrm{~kJ}$
3 $+237 \mathrm{~kJ}$
4 $-800 \mathrm{~kJ}$
Thermodynamics

272767 The dissociation energy of $\mathrm{CH}_4$ is $360 \mathrm{kcal} \mathrm{mol}^{-}$ 1 and that of ethane is $620 \mathrm{kcal} \mathrm{mol}^{-1}$. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is :

1 $260 \mathrm{kcal}$
2 $980 \mathrm{kcal}$
3 $90 \mathrm{kcal}$
4 $80 \mathrm{kcal}$
Thermodynamics

272769 What is the amount of heat is released when $8.17 \mathrm{~g}$ of $\mathrm{Al}$ (s) is converted to $\mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}$ via the reaction $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ ?
[For the reaction, $\Delta \mathrm{H}=-1676 \mathrm{~kJ} / \mathrm{mol}$, atomic mass of $\mathrm{Al}=27$

1 $134 \mathrm{~kJ}$
2 $254 \mathrm{~kJ}$
3 $268 \mathrm{~kJ}$
4 $1.01 \times 10^3 \mathrm{~kJ}$
Thermodynamics

272771 The bond enthalpy of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ are 435,243 and $431 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$ would be:

1 $92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

272772 Consider the following reactions:
$\mathrm{C}+\mathrm{O}_2 \rightarrow \mathrm{CO}_2 ; \quad \Delta \mathrm{H}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{H}_2+\mathrm{O}_2 \rightarrow 2 \mathrm{H}_2 \mathrm{O} ; \quad \Delta \mathrm{H}=-570 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_2+2 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CH}_4+2 \mathrm{O}_2 \Delta \mathrm{H}=890 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The heat of formation of methane is

1 $-180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-1060 \mathrm{~kJ} \mathrm{~mol} \mathrm{kl}^{-1}$
3 $-720 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-80 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

272815 Given: $2 \mathrm{C}(\mathrm{s})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})$;
$\Delta \mathbf{H}=-787 \mathbf{k J}$

$\begin{aligned}
& \mathrm{H}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{l}) ; \Delta \mathrm{H}=-286 \mathrm{~kJ} \\
& \mathrm{C}_2 \mathrm{H}_2(\mathrm{~g})+2 \frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_2(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \\
& ; \Delta \mathrm{H}=-1310 \mathrm{~kJ} \\
&
\end{aligned}$
The heat of formation of acetylene is

1 $-1802 \mathrm{~kJ}$
2 $+1802 \mathrm{~kJ}$
3 $+237 \mathrm{~kJ}$
4 $-800 \mathrm{~kJ}$
Thermodynamics

272767 The dissociation energy of $\mathrm{CH}_4$ is $360 \mathrm{kcal} \mathrm{mol}^{-}$ 1 and that of ethane is $620 \mathrm{kcal} \mathrm{mol}^{-1}$. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is :

1 $260 \mathrm{kcal}$
2 $980 \mathrm{kcal}$
3 $90 \mathrm{kcal}$
4 $80 \mathrm{kcal}$
Thermodynamics

272769 What is the amount of heat is released when $8.17 \mathrm{~g}$ of $\mathrm{Al}$ (s) is converted to $\mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}$ via the reaction $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_2(\mathrm{~g}) \rightarrow$ $2 \mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})$ ?
[For the reaction, $\Delta \mathrm{H}=-1676 \mathrm{~kJ} / \mathrm{mol}$, atomic mass of $\mathrm{Al}=27$

1 $134 \mathrm{~kJ}$
2 $254 \mathrm{~kJ}$
3 $268 \mathrm{~kJ}$
4 $1.01 \times 10^3 \mathrm{~kJ}$
Thermodynamics

272771 The bond enthalpy of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ are 435,243 and $431 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$ would be:

1 $92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3 $184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-184 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thermodynamics

272772 Consider the following reactions:
$\mathrm{C}+\mathrm{O}_2 \rightarrow \mathrm{CO}_2 ; \quad \Delta \mathrm{H}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{H}_2+\mathrm{O}_2 \rightarrow 2 \mathrm{H}_2 \mathrm{O} ; \quad \Delta \mathrm{H}=-570 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_2+2 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CH}_4+2 \mathrm{O}_2 \Delta \mathrm{H}=890 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The heat of formation of methane is

1 $-180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 $-1060 \mathrm{~kJ} \mathrm{~mol} \mathrm{kl}^{-1}$
3 $-720 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4 $-80 \mathrm{~kJ} \mathrm{~mol}^{-1}$