02. Second Law of Thermodynamics and Entropy
Thermodynamics

272742 If $\mathrm{S}^0 \mathrm{CH}_4(\mathrm{~g})=186.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^0 \mathrm{H}_2 \mathrm{O}(\mathrm{g})=$ $188.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^0 \mathrm{H}_2(\mathrm{~g})=130.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $\mathrm{S}^0 \mathrm{CO}(\mathrm{g})=197.91 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, then entropy change for $\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$ will be :

1 $-214.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $214.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $-218.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $218.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272747 Identify the correct statement for change of Gibbs energy for a system $\left(\Delta \mathrm{G}_{\mathrm{syytam}}\right)$ at constant temperature and pressure

1 If $\Delta G_{\text {sytam }}=0$, the system has attained equilibrium
2 If $\Delta \mathrm{G}_{\text {syrtam }}=0$, the system is still moving in a particular direction
3 If $\Delta \mathrm{G}_{\mathrm{syrtam}}=0$, the process is not spontaneous
4 if $\Delta \mathrm{G}_{\mathrm{syytsm}}=0$, the process is spontaneous
Thermodynamics

272748 At $27^{\circ} \mathrm{C}$ latent heat of fusion of a compound is $2930 \mathrm{~J} / \mathrm{mol}$, then entropy change is

1 $9.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
2 $10.77 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
3 $9.07 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
4 $0.977 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
Thermodynamics

272751 Entropy change in a process where 1 litre of liquid. He is poured into ice cold water is

1 finite and positive
2 finite and negative
3 zero
4 infinity.
Thermodynamics

272742 If $\mathrm{S}^0 \mathrm{CH}_4(\mathrm{~g})=186.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^0 \mathrm{H}_2 \mathrm{O}(\mathrm{g})=$ $188.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^0 \mathrm{H}_2(\mathrm{~g})=130.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $\mathrm{S}^0 \mathrm{CO}(\mathrm{g})=197.91 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, then entropy change for $\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$ will be :

1 $-214.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $214.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $-218.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $218.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272747 Identify the correct statement for change of Gibbs energy for a system $\left(\Delta \mathrm{G}_{\mathrm{syytam}}\right)$ at constant temperature and pressure

1 If $\Delta G_{\text {sytam }}=0$, the system has attained equilibrium
2 If $\Delta \mathrm{G}_{\text {syrtam }}=0$, the system is still moving in a particular direction
3 If $\Delta \mathrm{G}_{\mathrm{syrtam}}=0$, the process is not spontaneous
4 if $\Delta \mathrm{G}_{\mathrm{syytsm}}=0$, the process is spontaneous
Thermodynamics

272748 At $27^{\circ} \mathrm{C}$ latent heat of fusion of a compound is $2930 \mathrm{~J} / \mathrm{mol}$, then entropy change is

1 $9.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
2 $10.77 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
3 $9.07 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
4 $0.977 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
Thermodynamics

272751 Entropy change in a process where 1 litre of liquid. He is poured into ice cold water is

1 finite and positive
2 finite and negative
3 zero
4 infinity.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

272742 If $\mathrm{S}^0 \mathrm{CH}_4(\mathrm{~g})=186.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^0 \mathrm{H}_2 \mathrm{O}(\mathrm{g})=$ $188.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^0 \mathrm{H}_2(\mathrm{~g})=130.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $\mathrm{S}^0 \mathrm{CO}(\mathrm{g})=197.91 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, then entropy change for $\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$ will be :

1 $-214.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $214.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $-218.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $218.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272747 Identify the correct statement for change of Gibbs energy for a system $\left(\Delta \mathrm{G}_{\mathrm{syytam}}\right)$ at constant temperature and pressure

1 If $\Delta G_{\text {sytam }}=0$, the system has attained equilibrium
2 If $\Delta \mathrm{G}_{\text {syrtam }}=0$, the system is still moving in a particular direction
3 If $\Delta \mathrm{G}_{\mathrm{syrtam}}=0$, the process is not spontaneous
4 if $\Delta \mathrm{G}_{\mathrm{syytsm}}=0$, the process is spontaneous
Thermodynamics

272748 At $27^{\circ} \mathrm{C}$ latent heat of fusion of a compound is $2930 \mathrm{~J} / \mathrm{mol}$, then entropy change is

1 $9.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
2 $10.77 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
3 $9.07 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
4 $0.977 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
Thermodynamics

272751 Entropy change in a process where 1 litre of liquid. He is poured into ice cold water is

1 finite and positive
2 finite and negative
3 zero
4 infinity.
Thermodynamics

272742 If $\mathrm{S}^0 \mathrm{CH}_4(\mathrm{~g})=186.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^0 \mathrm{H}_2 \mathrm{O}(\mathrm{g})=$ $188.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^0 \mathrm{H}_2(\mathrm{~g})=130.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $\mathrm{S}^0 \mathrm{CO}(\mathrm{g})=197.91 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, then entropy change for $\mathrm{CH}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_2(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$ will be :

1 $-214.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2 $214.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3 $-218.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4 $218.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thermodynamics

272747 Identify the correct statement for change of Gibbs energy for a system $\left(\Delta \mathrm{G}_{\mathrm{syytam}}\right)$ at constant temperature and pressure

1 If $\Delta G_{\text {sytam }}=0$, the system has attained equilibrium
2 If $\Delta \mathrm{G}_{\text {syrtam }}=0$, the system is still moving in a particular direction
3 If $\Delta \mathrm{G}_{\mathrm{syrtam}}=0$, the process is not spontaneous
4 if $\Delta \mathrm{G}_{\mathrm{syytsm}}=0$, the process is spontaneous
Thermodynamics

272748 At $27^{\circ} \mathrm{C}$ latent heat of fusion of a compound is $2930 \mathrm{~J} / \mathrm{mol}$, then entropy change is

1 $9.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
2 $10.77 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
3 $9.07 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
4 $0.977 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
Thermodynamics

272751 Entropy change in a process where 1 litre of liquid. He is poured into ice cold water is

1 finite and positive
2 finite and negative
3 zero
4 infinity.