00. Thermodynamics Terms
Thermodynamics

272487 The combination of plots which does not represent isothermal expansion of an ideal gas is

1 B and D
2 A and D
3 $\mathrm{B}$ and $\mathrm{C}$
4 A and $\mathrm{C}$
Thermodynamics

272488 $\Delta \mathrm{U}$ is equal to

1 isochoric work
2 isobaric work
3 adiabatic work
4 isothermal work
Thermodynamics

272489 5 moles of an ideal gas at $100 \mathrm{~K}$ are allowed to undergo reversible compression till its temperature becomes $200 \mathrm{~K}$. If $\mathrm{C}_{\mathrm{T}}=28 \mathrm{JK}^{-1}$ $\mathrm{mol}^{-1}$, calculate $\Delta \mathrm{U}$ and $\Delta \mathrm{PV}$ for this process. $\left(\mathbf{R}=8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

1 $\Delta \mathrm{U}=2.8 \mathrm{~kJ} ; \Delta(\mathrm{pV})=0.8 \mathrm{~kJ}$
2 $\Delta \mathrm{U}=14 \mathrm{~J} ; \Delta(\mathrm{pV})=0.8 \mathrm{~J}$
3 $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=4 \mathrm{~kJ}$
4 $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=18 \mathrm{~kJ}$
Thermodynamics

272492 At $300 \mathrm{~K}$ and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires $375 \mathrm{~mL}$ air containing $20 \% \mathrm{O}_2$ by volume for complete combustion. After combustion, the gases occupy $330 \mathrm{~mL}$. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is

1 $\mathrm{C}_3 \mathrm{H}_8$
2 $\mathrm{C}_4 \mathrm{H}_8$
3 $\mathrm{C}_4 \mathrm{H}_{10}$
4 $\mathrm{C}_3 \mathrm{H}_6$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

272487 The combination of plots which does not represent isothermal expansion of an ideal gas is

1 B and D
2 A and D
3 $\mathrm{B}$ and $\mathrm{C}$
4 A and $\mathrm{C}$
Thermodynamics

272488 $\Delta \mathrm{U}$ is equal to

1 isochoric work
2 isobaric work
3 adiabatic work
4 isothermal work
Thermodynamics

272489 5 moles of an ideal gas at $100 \mathrm{~K}$ are allowed to undergo reversible compression till its temperature becomes $200 \mathrm{~K}$. If $\mathrm{C}_{\mathrm{T}}=28 \mathrm{JK}^{-1}$ $\mathrm{mol}^{-1}$, calculate $\Delta \mathrm{U}$ and $\Delta \mathrm{PV}$ for this process. $\left(\mathbf{R}=8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

1 $\Delta \mathrm{U}=2.8 \mathrm{~kJ} ; \Delta(\mathrm{pV})=0.8 \mathrm{~kJ}$
2 $\Delta \mathrm{U}=14 \mathrm{~J} ; \Delta(\mathrm{pV})=0.8 \mathrm{~J}$
3 $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=4 \mathrm{~kJ}$
4 $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=18 \mathrm{~kJ}$
Thermodynamics

272492 At $300 \mathrm{~K}$ and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires $375 \mathrm{~mL}$ air containing $20 \% \mathrm{O}_2$ by volume for complete combustion. After combustion, the gases occupy $330 \mathrm{~mL}$. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is

1 $\mathrm{C}_3 \mathrm{H}_8$
2 $\mathrm{C}_4 \mathrm{H}_8$
3 $\mathrm{C}_4 \mathrm{H}_{10}$
4 $\mathrm{C}_3 \mathrm{H}_6$
Thermodynamics

272487 The combination of plots which does not represent isothermal expansion of an ideal gas is

1 B and D
2 A and D
3 $\mathrm{B}$ and $\mathrm{C}$
4 A and $\mathrm{C}$
Thermodynamics

272488 $\Delta \mathrm{U}$ is equal to

1 isochoric work
2 isobaric work
3 adiabatic work
4 isothermal work
Thermodynamics

272489 5 moles of an ideal gas at $100 \mathrm{~K}$ are allowed to undergo reversible compression till its temperature becomes $200 \mathrm{~K}$. If $\mathrm{C}_{\mathrm{T}}=28 \mathrm{JK}^{-1}$ $\mathrm{mol}^{-1}$, calculate $\Delta \mathrm{U}$ and $\Delta \mathrm{PV}$ for this process. $\left(\mathbf{R}=8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

1 $\Delta \mathrm{U}=2.8 \mathrm{~kJ} ; \Delta(\mathrm{pV})=0.8 \mathrm{~kJ}$
2 $\Delta \mathrm{U}=14 \mathrm{~J} ; \Delta(\mathrm{pV})=0.8 \mathrm{~J}$
3 $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=4 \mathrm{~kJ}$
4 $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=18 \mathrm{~kJ}$
Thermodynamics

272492 At $300 \mathrm{~K}$ and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires $375 \mathrm{~mL}$ air containing $20 \% \mathrm{O}_2$ by volume for complete combustion. After combustion, the gases occupy $330 \mathrm{~mL}$. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is

1 $\mathrm{C}_3 \mathrm{H}_8$
2 $\mathrm{C}_4 \mathrm{H}_8$
3 $\mathrm{C}_4 \mathrm{H}_{10}$
4 $\mathrm{C}_3 \mathrm{H}_6$
Thermodynamics

272487 The combination of plots which does not represent isothermal expansion of an ideal gas is

1 B and D
2 A and D
3 $\mathrm{B}$ and $\mathrm{C}$
4 A and $\mathrm{C}$
Thermodynamics

272488 $\Delta \mathrm{U}$ is equal to

1 isochoric work
2 isobaric work
3 adiabatic work
4 isothermal work
Thermodynamics

272489 5 moles of an ideal gas at $100 \mathrm{~K}$ are allowed to undergo reversible compression till its temperature becomes $200 \mathrm{~K}$. If $\mathrm{C}_{\mathrm{T}}=28 \mathrm{JK}^{-1}$ $\mathrm{mol}^{-1}$, calculate $\Delta \mathrm{U}$ and $\Delta \mathrm{PV}$ for this process. $\left(\mathbf{R}=8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

1 $\Delta \mathrm{U}=2.8 \mathrm{~kJ} ; \Delta(\mathrm{pV})=0.8 \mathrm{~kJ}$
2 $\Delta \mathrm{U}=14 \mathrm{~J} ; \Delta(\mathrm{pV})=0.8 \mathrm{~J}$
3 $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=4 \mathrm{~kJ}$
4 $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=18 \mathrm{~kJ}$
Thermodynamics

272492 At $300 \mathrm{~K}$ and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires $375 \mathrm{~mL}$ air containing $20 \% \mathrm{O}_2$ by volume for complete combustion. After combustion, the gases occupy $330 \mathrm{~mL}$. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is

1 $\mathrm{C}_3 \mathrm{H}_8$
2 $\mathrm{C}_4 \mathrm{H}_8$
3 $\mathrm{C}_4 \mathrm{H}_{10}$
4 $\mathrm{C}_3 \mathrm{H}_6$