00. Thermodynamics Terms
Thermodynamics

272474 The entropy change associated with the conversion of $1 \mathrm{~kg}$ of ice at $273 \mathrm{~K}$ to water vapours at $383 \mathrm{~K}$ is (Specific heat of water liquid and water vapour are $4.2 \mathrm{kJK}^{-1} \mathrm{~kg}^{-1}$ and vapourisation of water are $334 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and $2491 \mathrm{kJkg}^{-1}$ respectively).
$(\log 273=2.436, \log 373=2.572$,
$\log 383=2.583$ )

1 $9.25 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
2 $8.49 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
3 $7.90 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
4 $2.64 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Thermodynamics

272467 From the figure, in which of the following vessel, the pressure of the gas is the highest, (Temperature and volume of the gases are the same in each vessel)

1 \(Q\)
2 \(\mathrm{P}\)
3 \(\mathrm{R}\)
4 \(\mathrm{S}\)
Thermodynamics

272482 The difference between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}(\Delta \mathrm{H}-\Delta \mathrm{U})$, when the combustion of one mole of heptane (l) is carried out at a temperature $T$, is equal to

1 $-4 \mathrm{RT}$
2 $3 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 -3 RT
Thermodynamics

272483 At $298.2 \mathrm{~K}$ the relationship between enthalpy of bond dissociation (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) for hydrogen ( $\left.\mathrm{E}_{\mathrm{H}}\right)$ and its isotope, deuterium $\mathrm{E}_{\mathrm{D}}$ ), is best described by

1 $\mathrm{E}_{\mathrm{H}}=\frac{1}{2} \mathrm{E}_{\mathrm{D}}$
2 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}$
3 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}-7.5$
4 $\mathrm{E}_{\mathrm{H}}=2 \mathrm{E}_{\mathrm{D}}$
Thermodynamics

272485 An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If $T_i$ is the initial temperature and $T_f$ is the final temperature, then which of the following statements is correct?

1 $\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {irrer }}>\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {rer }}$
2 $\mathrm{T}_{\mathrm{f}}>\mathrm{T}_{\mathrm{i}}$ for reversible process but $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{i}}$ for irreversible process
3 $(Tf)rev = (Tf)irrev$
4 $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}$ for both reversible and irreversible processes
Thermodynamics

272474 The entropy change associated with the conversion of $1 \mathrm{~kg}$ of ice at $273 \mathrm{~K}$ to water vapours at $383 \mathrm{~K}$ is (Specific heat of water liquid and water vapour are $4.2 \mathrm{kJK}^{-1} \mathrm{~kg}^{-1}$ and vapourisation of water are $334 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and $2491 \mathrm{kJkg}^{-1}$ respectively).
$(\log 273=2.436, \log 373=2.572$,
$\log 383=2.583$ )

1 $9.25 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
2 $8.49 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
3 $7.90 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
4 $2.64 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Thermodynamics

272467 From the figure, in which of the following vessel, the pressure of the gas is the highest, (Temperature and volume of the gases are the same in each vessel)

1 \(Q\)
2 \(\mathrm{P}\)
3 \(\mathrm{R}\)
4 \(\mathrm{S}\)
Thermodynamics

272482 The difference between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}(\Delta \mathrm{H}-\Delta \mathrm{U})$, when the combustion of one mole of heptane (l) is carried out at a temperature $T$, is equal to

1 $-4 \mathrm{RT}$
2 $3 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 -3 RT
Thermodynamics

272483 At $298.2 \mathrm{~K}$ the relationship between enthalpy of bond dissociation (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) for hydrogen ( $\left.\mathrm{E}_{\mathrm{H}}\right)$ and its isotope, deuterium $\mathrm{E}_{\mathrm{D}}$ ), is best described by

1 $\mathrm{E}_{\mathrm{H}}=\frac{1}{2} \mathrm{E}_{\mathrm{D}}$
2 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}$
3 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}-7.5$
4 $\mathrm{E}_{\mathrm{H}}=2 \mathrm{E}_{\mathrm{D}}$
Thermodynamics

272485 An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If $T_i$ is the initial temperature and $T_f$ is the final temperature, then which of the following statements is correct?

1 $\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {irrer }}>\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {rer }}$
2 $\mathrm{T}_{\mathrm{f}}>\mathrm{T}_{\mathrm{i}}$ for reversible process but $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{i}}$ for irreversible process
3 $(Tf)rev = (Tf)irrev$
4 $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}$ for both reversible and irreversible processes
Thermodynamics

272474 The entropy change associated with the conversion of $1 \mathrm{~kg}$ of ice at $273 \mathrm{~K}$ to water vapours at $383 \mathrm{~K}$ is (Specific heat of water liquid and water vapour are $4.2 \mathrm{kJK}^{-1} \mathrm{~kg}^{-1}$ and vapourisation of water are $334 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and $2491 \mathrm{kJkg}^{-1}$ respectively).
$(\log 273=2.436, \log 373=2.572$,
$\log 383=2.583$ )

1 $9.25 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
2 $8.49 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
3 $7.90 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
4 $2.64 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Thermodynamics

272467 From the figure, in which of the following vessel, the pressure of the gas is the highest, (Temperature and volume of the gases are the same in each vessel)

1 \(Q\)
2 \(\mathrm{P}\)
3 \(\mathrm{R}\)
4 \(\mathrm{S}\)
Thermodynamics

272482 The difference between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}(\Delta \mathrm{H}-\Delta \mathrm{U})$, when the combustion of one mole of heptane (l) is carried out at a temperature $T$, is equal to

1 $-4 \mathrm{RT}$
2 $3 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 -3 RT
Thermodynamics

272483 At $298.2 \mathrm{~K}$ the relationship between enthalpy of bond dissociation (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) for hydrogen ( $\left.\mathrm{E}_{\mathrm{H}}\right)$ and its isotope, deuterium $\mathrm{E}_{\mathrm{D}}$ ), is best described by

1 $\mathrm{E}_{\mathrm{H}}=\frac{1}{2} \mathrm{E}_{\mathrm{D}}$
2 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}$
3 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}-7.5$
4 $\mathrm{E}_{\mathrm{H}}=2 \mathrm{E}_{\mathrm{D}}$
Thermodynamics

272485 An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If $T_i$ is the initial temperature and $T_f$ is the final temperature, then which of the following statements is correct?

1 $\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {irrer }}>\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {rer }}$
2 $\mathrm{T}_{\mathrm{f}}>\mathrm{T}_{\mathrm{i}}$ for reversible process but $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{i}}$ for irreversible process
3 $(Tf)rev = (Tf)irrev$
4 $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}$ for both reversible and irreversible processes
Thermodynamics

272474 The entropy change associated with the conversion of $1 \mathrm{~kg}$ of ice at $273 \mathrm{~K}$ to water vapours at $383 \mathrm{~K}$ is (Specific heat of water liquid and water vapour are $4.2 \mathrm{kJK}^{-1} \mathrm{~kg}^{-1}$ and vapourisation of water are $334 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and $2491 \mathrm{kJkg}^{-1}$ respectively).
$(\log 273=2.436, \log 373=2.572$,
$\log 383=2.583$ )

1 $9.25 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
2 $8.49 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
3 $7.90 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
4 $2.64 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Thermodynamics

272467 From the figure, in which of the following vessel, the pressure of the gas is the highest, (Temperature and volume of the gases are the same in each vessel)

1 \(Q\)
2 \(\mathrm{P}\)
3 \(\mathrm{R}\)
4 \(\mathrm{S}\)
Thermodynamics

272482 The difference between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}(\Delta \mathrm{H}-\Delta \mathrm{U})$, when the combustion of one mole of heptane (l) is carried out at a temperature $T$, is equal to

1 $-4 \mathrm{RT}$
2 $3 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 -3 RT
Thermodynamics

272483 At $298.2 \mathrm{~K}$ the relationship between enthalpy of bond dissociation (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) for hydrogen ( $\left.\mathrm{E}_{\mathrm{H}}\right)$ and its isotope, deuterium $\mathrm{E}_{\mathrm{D}}$ ), is best described by

1 $\mathrm{E}_{\mathrm{H}}=\frac{1}{2} \mathrm{E}_{\mathrm{D}}$
2 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}$
3 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}-7.5$
4 $\mathrm{E}_{\mathrm{H}}=2 \mathrm{E}_{\mathrm{D}}$
Thermodynamics

272485 An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If $T_i$ is the initial temperature and $T_f$ is the final temperature, then which of the following statements is correct?

1 $\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {irrer }}>\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {rer }}$
2 $\mathrm{T}_{\mathrm{f}}>\mathrm{T}_{\mathrm{i}}$ for reversible process but $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{i}}$ for irreversible process
3 $(Tf)rev = (Tf)irrev$
4 $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}$ for both reversible and irreversible processes
Thermodynamics

272474 The entropy change associated with the conversion of $1 \mathrm{~kg}$ of ice at $273 \mathrm{~K}$ to water vapours at $383 \mathrm{~K}$ is (Specific heat of water liquid and water vapour are $4.2 \mathrm{kJK}^{-1} \mathrm{~kg}^{-1}$ and vapourisation of water are $334 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and $2491 \mathrm{kJkg}^{-1}$ respectively).
$(\log 273=2.436, \log 373=2.572$,
$\log 383=2.583$ )

1 $9.25 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
2 $8.49 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
3 $7.90 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
4 $2.64 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Thermodynamics

272467 From the figure, in which of the following vessel, the pressure of the gas is the highest, (Temperature and volume of the gases are the same in each vessel)

1 \(Q\)
2 \(\mathrm{P}\)
3 \(\mathrm{R}\)
4 \(\mathrm{S}\)
Thermodynamics

272482 The difference between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}(\Delta \mathrm{H}-\Delta \mathrm{U})$, when the combustion of one mole of heptane (l) is carried out at a temperature $T$, is equal to

1 $-4 \mathrm{RT}$
2 $3 \mathrm{RT}$
3 $4 \mathrm{RT}$
4 -3 RT
Thermodynamics

272483 At $298.2 \mathrm{~K}$ the relationship between enthalpy of bond dissociation (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) for hydrogen ( $\left.\mathrm{E}_{\mathrm{H}}\right)$ and its isotope, deuterium $\mathrm{E}_{\mathrm{D}}$ ), is best described by

1 $\mathrm{E}_{\mathrm{H}}=\frac{1}{2} \mathrm{E}_{\mathrm{D}}$
2 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}$
3 $\mathrm{E}_{\mathrm{H}}=\mathrm{E}_{\mathrm{D}}-7.5$
4 $\mathrm{E}_{\mathrm{H}}=2 \mathrm{E}_{\mathrm{D}}$
Thermodynamics

272485 An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If $T_i$ is the initial temperature and $T_f$ is the final temperature, then which of the following statements is correct?

1 $\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {irrer }}>\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {rer }}$
2 $\mathrm{T}_{\mathrm{f}}>\mathrm{T}_{\mathrm{i}}$ for reversible process but $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{i}}$ for irreversible process
3 $(Tf)rev = (Tf)irrev$
4 $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}$ for both reversible and irreversible processes