00. Thermodynamics Terms
Thermodynamics

272404 Standard eptropy of $X_2, Y_2$ and $X Y_3$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} \mathrm{X}_2+\frac{3}{2} Y_2$ ? $\mathrm{XY}_3, \Delta \mathrm{H}=-30 \mathrm{~kJ}$, to be at equilibrium, the temperature will be

1 $1250 \mathrm{~K}$
2 $500 \mathrm{~K}$
3 $750 \mathrm{~K}$
4 $1000 \mathrm{~K}$
Thermodynamics

272405 One mole of an ideal gas at $300 \mathrm{~K}$ is expanded isothermally from an initial volume of 1 litre to 10 litres. Then $\Delta S$ (cal deg $^{-1} \mathrm{~mol}^{-1}$ ) for this process is: $\left(R=2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$

1 7.12
2 8.314
3 4.6
4 3.95
Thermodynamics

272407 For the reaction,
$\mathrm{C}_3 \mathrm{H}_8(\mathrm{~g})+5 \mathrm{O}_2(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_2(\mathrm{~g})+4 \mathrm{H}_2 \mathrm{O}(\mathrm{l})$
at constant temperature, $\Delta H-\Delta \mathrm{E}$ is

1 $\mathrm{RT}$
2 $-3 \mathrm{RT}$
3 $3 \mathrm{RT}$
4 - RT
Thermodynamics

272409 Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction,
$\mathrm{Na}_2 \mathrm{O}(\mathrm{s})+\mathrm{SO}_3(\mathrm{~g}) \rightarrow \mathrm{NaSO}_4(\mathrm{~g})$
given the following :

1 $+823 \mathrm{~kJ}$
2 $-581 \mathrm{~kJ}$
3 $-435 \mathrm{~kJ}$
4 $+531 \mathrm{~kJ}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

272404 Standard eptropy of $X_2, Y_2$ and $X Y_3$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} \mathrm{X}_2+\frac{3}{2} Y_2$ ? $\mathrm{XY}_3, \Delta \mathrm{H}=-30 \mathrm{~kJ}$, to be at equilibrium, the temperature will be

1 $1250 \mathrm{~K}$
2 $500 \mathrm{~K}$
3 $750 \mathrm{~K}$
4 $1000 \mathrm{~K}$
Thermodynamics

272405 One mole of an ideal gas at $300 \mathrm{~K}$ is expanded isothermally from an initial volume of 1 litre to 10 litres. Then $\Delta S$ (cal deg $^{-1} \mathrm{~mol}^{-1}$ ) for this process is: $\left(R=2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$

1 7.12
2 8.314
3 4.6
4 3.95
Thermodynamics

272407 For the reaction,
$\mathrm{C}_3 \mathrm{H}_8(\mathrm{~g})+5 \mathrm{O}_2(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_2(\mathrm{~g})+4 \mathrm{H}_2 \mathrm{O}(\mathrm{l})$
at constant temperature, $\Delta H-\Delta \mathrm{E}$ is

1 $\mathrm{RT}$
2 $-3 \mathrm{RT}$
3 $3 \mathrm{RT}$
4 - RT
Thermodynamics

272409 Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction,
$\mathrm{Na}_2 \mathrm{O}(\mathrm{s})+\mathrm{SO}_3(\mathrm{~g}) \rightarrow \mathrm{NaSO}_4(\mathrm{~g})$
given the following :

1 $+823 \mathrm{~kJ}$
2 $-581 \mathrm{~kJ}$
3 $-435 \mathrm{~kJ}$
4 $+531 \mathrm{~kJ}$
Thermodynamics

272404 Standard eptropy of $X_2, Y_2$ and $X Y_3$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} \mathrm{X}_2+\frac{3}{2} Y_2$ ? $\mathrm{XY}_3, \Delta \mathrm{H}=-30 \mathrm{~kJ}$, to be at equilibrium, the temperature will be

1 $1250 \mathrm{~K}$
2 $500 \mathrm{~K}$
3 $750 \mathrm{~K}$
4 $1000 \mathrm{~K}$
Thermodynamics

272405 One mole of an ideal gas at $300 \mathrm{~K}$ is expanded isothermally from an initial volume of 1 litre to 10 litres. Then $\Delta S$ (cal deg $^{-1} \mathrm{~mol}^{-1}$ ) for this process is: $\left(R=2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$

1 7.12
2 8.314
3 4.6
4 3.95
Thermodynamics

272407 For the reaction,
$\mathrm{C}_3 \mathrm{H}_8(\mathrm{~g})+5 \mathrm{O}_2(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_2(\mathrm{~g})+4 \mathrm{H}_2 \mathrm{O}(\mathrm{l})$
at constant temperature, $\Delta H-\Delta \mathrm{E}$ is

1 $\mathrm{RT}$
2 $-3 \mathrm{RT}$
3 $3 \mathrm{RT}$
4 - RT
Thermodynamics

272409 Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction,
$\mathrm{Na}_2 \mathrm{O}(\mathrm{s})+\mathrm{SO}_3(\mathrm{~g}) \rightarrow \mathrm{NaSO}_4(\mathrm{~g})$
given the following :

1 $+823 \mathrm{~kJ}$
2 $-581 \mathrm{~kJ}$
3 $-435 \mathrm{~kJ}$
4 $+531 \mathrm{~kJ}$
Thermodynamics

272404 Standard eptropy of $X_2, Y_2$ and $X Y_3$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} \mathrm{X}_2+\frac{3}{2} Y_2$ ? $\mathrm{XY}_3, \Delta \mathrm{H}=-30 \mathrm{~kJ}$, to be at equilibrium, the temperature will be

1 $1250 \mathrm{~K}$
2 $500 \mathrm{~K}$
3 $750 \mathrm{~K}$
4 $1000 \mathrm{~K}$
Thermodynamics

272405 One mole of an ideal gas at $300 \mathrm{~K}$ is expanded isothermally from an initial volume of 1 litre to 10 litres. Then $\Delta S$ (cal deg $^{-1} \mathrm{~mol}^{-1}$ ) for this process is: $\left(R=2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$

1 7.12
2 8.314
3 4.6
4 3.95
Thermodynamics

272407 For the reaction,
$\mathrm{C}_3 \mathrm{H}_8(\mathrm{~g})+5 \mathrm{O}_2(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_2(\mathrm{~g})+4 \mathrm{H}_2 \mathrm{O}(\mathrm{l})$
at constant temperature, $\Delta H-\Delta \mathrm{E}$ is

1 $\mathrm{RT}$
2 $-3 \mathrm{RT}$
3 $3 \mathrm{RT}$
4 - RT
Thermodynamics

272409 Calculate $\Delta \mathrm{H}^{\circ}$ for the reaction,
$\mathrm{Na}_2 \mathrm{O}(\mathrm{s})+\mathrm{SO}_3(\mathrm{~g}) \rightarrow \mathrm{NaSO}_4(\mathrm{~g})$
given the following :

1 $+823 \mathrm{~kJ}$
2 $-581 \mathrm{~kJ}$
3 $-435 \mathrm{~kJ}$
4 $+531 \mathrm{~kJ}$