1 $5 \mathrm{p}_{\mathrm{y}}$
2 $6 \mathrm{p}_z$
3 $4 \mathrm{~d}_{\mathrm{xy}}$
4 $5 \mathrm{~d}_{\mathrm{yz}}$
Explanation:
: Radial nodes $=\mathrm{n}-l-1$
Angular node $=l$
where, $\mathrm{n}=$ Principle quantum number.
$l=$ Azimuthal quantum number.
For $5 \mathrm{p}_{\mathrm{y}}, \mathrm{n}=5, l=1$
Radial node $=5-1-1=3$
Angular node $=1$
For $6 \mathrm{p}_z, \mathrm{n}=6, l=1$
Radial node $=6-1-1=4$
Angular node $=1$
For $4 \mathrm{~d}_{\mathrm{xy}}, \mathrm{n}=4, l=2$
Radial node $=4-2-1=1$
Angular node $=2$
For $5 \mathrm{~d}_{\mathrm{yz}}, \mathrm{n}=5, l=2$
Radial node $=5-2-1=2$
Angular node $=2$
Hence, the orbital node 4 radial and 1 angular nodes is $6 \mathrm{p}_z$.