05. Electronic Configuration and Shape of Orbital's
Structure of Atom

238848 Which of the following electron transitions in the $H$-atom will release the largest amount of energy?

1 For, $n=3$ to $n=2$
$\left(\frac{1}{2^2}-\frac{1}{3^2}\right)=\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{36}$
2 For, $n=2$ to $n=1$
$\left(\frac{1}{1^2}-\frac{1}{2^2}\right)=\left(\frac{1}{1}-\frac{1}{4}\right)=\frac{3}{4}$
3 For, $\mathrm{n}=5$ to $\mathrm{n}=2$
$\left(\frac{1}{2^2}-\frac{1}{5^2}\right)=\left(\frac{1}{4}-\frac{1}{2^5}\right)=\frac{21}{100}$
4 For, $\mathrm{n}=6$ to $\mathrm{n}=2$
$\begin{aligned}
& \left(\frac{1}{2^2}-\frac{1}{6^2}\right)=\left(\frac{1}{4}-\frac{1}{36}\right)=\frac{8}{36} \\
& \frac{3}{4}>\frac{21}{100}>\frac{8}{36}>\frac{5}{36}
\end{aligned}$
Hence, largest amount of energy is released when electron jumps from $\mathrm{n}=2$ to $\mathrm{n}=1$.
Structure of Atom

238846 Which among the following represents Schrodinger wave equation?
#[Qdiff: Hard, QCat: Numerical Based, examname: GUJCET-2008
, AP EAMCET (Engg.) 18.9.2020 Shift-I]#

1 $\frac{\mathrm{d}^2 \psi}{\mathrm{dx}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dy}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dz}^2}+\frac{4 \pi \mathrm{m}}{\mathrm{h}}(\mathrm{E}-\mathrm{v}) \psi=0$
2 $\hat{\mathrm{H}}=\frac{\mathrm{h}}{4 \pi^2 \mathrm{~m}}\left(\frac{\mathrm{d}^2}{\mathrm{dx}^2}+\frac{\mathrm{d}^2}{\mathrm{dy}^2}+\frac{\mathrm{d}^2}{\mathrm{dz}^2}\right)+\mathrm{V}$
3 $\hat{\mathrm{H}}=\frac{-\mathrm{h}^2}{8 \pi^2 \mathrm{~m}}\left(\frac{\mathrm{d}^2}{\mathrm{dx}}+\frac{\mathrm{d}^2}{\mathrm{dy} \mathrm{y}^2}+\frac{\mathrm{d}^2}{\mathrm{dz}^2}\right)+\mathrm{P}$
4 $\frac{\mathrm{d}^2 \psi}{\mathrm{dx}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dy}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dz}^2}+\frac{8 \pi^2 \mathrm{~m}}{\mathrm{~h}^2}(\mathrm{E}-\mathrm{v}) \psi=0$
Structure of Atom

238847 The spectrum of Helium is expected to be similar to that of
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAPCET 19-08-2021 Shift-I
, NEET-1998]#

1 $\mathrm{Li}^{+}$
2 $\mathrm{H}$
3 $\mathrm{Na}$
4 $\mathrm{He}^{+}$
Structure of Atom

238851 What are the values of $n_1$ and $n_2$ respectively for $H_\beta$ line in the Lyman series of hydrogen atomic spectrum?

1 3 and 5
2 2 and 3
3 1 and 3
4 2 and 4
Structure of Atom

238848 Which of the following electron transitions in the $H$-atom will release the largest amount of energy?

1 For, $n=3$ to $n=2$
$\left(\frac{1}{2^2}-\frac{1}{3^2}\right)=\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{36}$
2 For, $n=2$ to $n=1$
$\left(\frac{1}{1^2}-\frac{1}{2^2}\right)=\left(\frac{1}{1}-\frac{1}{4}\right)=\frac{3}{4}$
3 For, $\mathrm{n}=5$ to $\mathrm{n}=2$
$\left(\frac{1}{2^2}-\frac{1}{5^2}\right)=\left(\frac{1}{4}-\frac{1}{2^5}\right)=\frac{21}{100}$
4 For, $\mathrm{n}=6$ to $\mathrm{n}=2$
$\begin{aligned}
& \left(\frac{1}{2^2}-\frac{1}{6^2}\right)=\left(\frac{1}{4}-\frac{1}{36}\right)=\frac{8}{36} \\
& \frac{3}{4}>\frac{21}{100}>\frac{8}{36}>\frac{5}{36}
\end{aligned}$
Hence, largest amount of energy is released when electron jumps from $\mathrm{n}=2$ to $\mathrm{n}=1$.
Structure of Atom

238846 Which among the following represents Schrodinger wave equation?
#[Qdiff: Hard, QCat: Numerical Based, examname: GUJCET-2008
, AP EAMCET (Engg.) 18.9.2020 Shift-I]#

1 $\frac{\mathrm{d}^2 \psi}{\mathrm{dx}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dy}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dz}^2}+\frac{4 \pi \mathrm{m}}{\mathrm{h}}(\mathrm{E}-\mathrm{v}) \psi=0$
2 $\hat{\mathrm{H}}=\frac{\mathrm{h}}{4 \pi^2 \mathrm{~m}}\left(\frac{\mathrm{d}^2}{\mathrm{dx}^2}+\frac{\mathrm{d}^2}{\mathrm{dy}^2}+\frac{\mathrm{d}^2}{\mathrm{dz}^2}\right)+\mathrm{V}$
3 $\hat{\mathrm{H}}=\frac{-\mathrm{h}^2}{8 \pi^2 \mathrm{~m}}\left(\frac{\mathrm{d}^2}{\mathrm{dx}}+\frac{\mathrm{d}^2}{\mathrm{dy} \mathrm{y}^2}+\frac{\mathrm{d}^2}{\mathrm{dz}^2}\right)+\mathrm{P}$
4 $\frac{\mathrm{d}^2 \psi}{\mathrm{dx}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dy}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dz}^2}+\frac{8 \pi^2 \mathrm{~m}}{\mathrm{~h}^2}(\mathrm{E}-\mathrm{v}) \psi=0$
Structure of Atom

238847 The spectrum of Helium is expected to be similar to that of
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAPCET 19-08-2021 Shift-I
, NEET-1998]#

1 $\mathrm{Li}^{+}$
2 $\mathrm{H}$
3 $\mathrm{Na}$
4 $\mathrm{He}^{+}$
Structure of Atom

238851 What are the values of $n_1$ and $n_2$ respectively for $H_\beta$ line in the Lyman series of hydrogen atomic spectrum?

1 3 and 5
2 2 and 3
3 1 and 3
4 2 and 4
Structure of Atom

238848 Which of the following electron transitions in the $H$-atom will release the largest amount of energy?

1 For, $n=3$ to $n=2$
$\left(\frac{1}{2^2}-\frac{1}{3^2}\right)=\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{36}$
2 For, $n=2$ to $n=1$
$\left(\frac{1}{1^2}-\frac{1}{2^2}\right)=\left(\frac{1}{1}-\frac{1}{4}\right)=\frac{3}{4}$
3 For, $\mathrm{n}=5$ to $\mathrm{n}=2$
$\left(\frac{1}{2^2}-\frac{1}{5^2}\right)=\left(\frac{1}{4}-\frac{1}{2^5}\right)=\frac{21}{100}$
4 For, $\mathrm{n}=6$ to $\mathrm{n}=2$
$\begin{aligned}
& \left(\frac{1}{2^2}-\frac{1}{6^2}\right)=\left(\frac{1}{4}-\frac{1}{36}\right)=\frac{8}{36} \\
& \frac{3}{4}>\frac{21}{100}>\frac{8}{36}>\frac{5}{36}
\end{aligned}$
Hence, largest amount of energy is released when electron jumps from $\mathrm{n}=2$ to $\mathrm{n}=1$.
Structure of Atom

238846 Which among the following represents Schrodinger wave equation?
#[Qdiff: Hard, QCat: Numerical Based, examname: GUJCET-2008
, AP EAMCET (Engg.) 18.9.2020 Shift-I]#

1 $\frac{\mathrm{d}^2 \psi}{\mathrm{dx}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dy}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dz}^2}+\frac{4 \pi \mathrm{m}}{\mathrm{h}}(\mathrm{E}-\mathrm{v}) \psi=0$
2 $\hat{\mathrm{H}}=\frac{\mathrm{h}}{4 \pi^2 \mathrm{~m}}\left(\frac{\mathrm{d}^2}{\mathrm{dx}^2}+\frac{\mathrm{d}^2}{\mathrm{dy}^2}+\frac{\mathrm{d}^2}{\mathrm{dz}^2}\right)+\mathrm{V}$
3 $\hat{\mathrm{H}}=\frac{-\mathrm{h}^2}{8 \pi^2 \mathrm{~m}}\left(\frac{\mathrm{d}^2}{\mathrm{dx}}+\frac{\mathrm{d}^2}{\mathrm{dy} \mathrm{y}^2}+\frac{\mathrm{d}^2}{\mathrm{dz}^2}\right)+\mathrm{P}$
4 $\frac{\mathrm{d}^2 \psi}{\mathrm{dx}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dy}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dz}^2}+\frac{8 \pi^2 \mathrm{~m}}{\mathrm{~h}^2}(\mathrm{E}-\mathrm{v}) \psi=0$
Structure of Atom

238847 The spectrum of Helium is expected to be similar to that of
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAPCET 19-08-2021 Shift-I
, NEET-1998]#

1 $\mathrm{Li}^{+}$
2 $\mathrm{H}$
3 $\mathrm{Na}$
4 $\mathrm{He}^{+}$
Structure of Atom

238851 What are the values of $n_1$ and $n_2$ respectively for $H_\beta$ line in the Lyman series of hydrogen atomic spectrum?

1 3 and 5
2 2 and 3
3 1 and 3
4 2 and 4
Structure of Atom

238848 Which of the following electron transitions in the $H$-atom will release the largest amount of energy?

1 For, $n=3$ to $n=2$
$\left(\frac{1}{2^2}-\frac{1}{3^2}\right)=\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{36}$
2 For, $n=2$ to $n=1$
$\left(\frac{1}{1^2}-\frac{1}{2^2}\right)=\left(\frac{1}{1}-\frac{1}{4}\right)=\frac{3}{4}$
3 For, $\mathrm{n}=5$ to $\mathrm{n}=2$
$\left(\frac{1}{2^2}-\frac{1}{5^2}\right)=\left(\frac{1}{4}-\frac{1}{2^5}\right)=\frac{21}{100}$
4 For, $\mathrm{n}=6$ to $\mathrm{n}=2$
$\begin{aligned}
& \left(\frac{1}{2^2}-\frac{1}{6^2}\right)=\left(\frac{1}{4}-\frac{1}{36}\right)=\frac{8}{36} \\
& \frac{3}{4}>\frac{21}{100}>\frac{8}{36}>\frac{5}{36}
\end{aligned}$
Hence, largest amount of energy is released when electron jumps from $\mathrm{n}=2$ to $\mathrm{n}=1$.
Structure of Atom

238846 Which among the following represents Schrodinger wave equation?
#[Qdiff: Hard, QCat: Numerical Based, examname: GUJCET-2008
, AP EAMCET (Engg.) 18.9.2020 Shift-I]#

1 $\frac{\mathrm{d}^2 \psi}{\mathrm{dx}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dy}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dz}^2}+\frac{4 \pi \mathrm{m}}{\mathrm{h}}(\mathrm{E}-\mathrm{v}) \psi=0$
2 $\hat{\mathrm{H}}=\frac{\mathrm{h}}{4 \pi^2 \mathrm{~m}}\left(\frac{\mathrm{d}^2}{\mathrm{dx}^2}+\frac{\mathrm{d}^2}{\mathrm{dy}^2}+\frac{\mathrm{d}^2}{\mathrm{dz}^2}\right)+\mathrm{V}$
3 $\hat{\mathrm{H}}=\frac{-\mathrm{h}^2}{8 \pi^2 \mathrm{~m}}\left(\frac{\mathrm{d}^2}{\mathrm{dx}}+\frac{\mathrm{d}^2}{\mathrm{dy} \mathrm{y}^2}+\frac{\mathrm{d}^2}{\mathrm{dz}^2}\right)+\mathrm{P}$
4 $\frac{\mathrm{d}^2 \psi}{\mathrm{dx}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dy}^2}+\frac{\mathrm{d}^2 \psi}{\mathrm{dz}^2}+\frac{8 \pi^2 \mathrm{~m}}{\mathrm{~h}^2}(\mathrm{E}-\mathrm{v}) \psi=0$
Structure of Atom

238847 The spectrum of Helium is expected to be similar to that of
#[Qdiff: Hard, QCat: Numerical Based, examname: AP EAPCET 19-08-2021 Shift-I
, NEET-1998]#

1 $\mathrm{Li}^{+}$
2 $\mathrm{H}$
3 $\mathrm{Na}$
4 $\mathrm{He}^{+}$
Structure of Atom

238851 What are the values of $n_1$ and $n_2$ respectively for $H_\beta$ line in the Lyman series of hydrogen atomic spectrum?

1 3 and 5
2 2 and 3
3 1 and 3
4 2 and 4