238804 If a proton is accelerated to a velocity of $3 \times 10^7$ $\mathrm{m} . \mathrm{s}^{-1}$ which is accurate up to $\pm 0.5 \%$, then the uncertainty in its position will be [mass of proton $\left.=1.66 \times 10^{-27} \mathrm{~kg}, \mathrm{~h}=6.6 \times \overline{1^{-34}} \mathrm{~J} . \mathrm{s}\right]$
238805 In an atom, an electron is moving with a speed of $600 \mathrm{~m} / \mathrm{s}$ with an accuracy of $0.005 \%$. Certainty with which position of the electron can be located is $\left(h=6.6 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1}\right.$, mass of electron $e_{\mathrm{m}}=9.1$ $\left.\times 10^{-31} \mathbf{k g}\right)$
238804 If a proton is accelerated to a velocity of $3 \times 10^7$ $\mathrm{m} . \mathrm{s}^{-1}$ which is accurate up to $\pm 0.5 \%$, then the uncertainty in its position will be [mass of proton $\left.=1.66 \times 10^{-27} \mathrm{~kg}, \mathrm{~h}=6.6 \times \overline{1^{-34}} \mathrm{~J} . \mathrm{s}\right]$
238805 In an atom, an electron is moving with a speed of $600 \mathrm{~m} / \mathrm{s}$ with an accuracy of $0.005 \%$. Certainty with which position of the electron can be located is $\left(h=6.6 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1}\right.$, mass of electron $e_{\mathrm{m}}=9.1$ $\left.\times 10^{-31} \mathbf{k g}\right)$
238804 If a proton is accelerated to a velocity of $3 \times 10^7$ $\mathrm{m} . \mathrm{s}^{-1}$ which is accurate up to $\pm 0.5 \%$, then the uncertainty in its position will be [mass of proton $\left.=1.66 \times 10^{-27} \mathrm{~kg}, \mathrm{~h}=6.6 \times \overline{1^{-34}} \mathrm{~J} . \mathrm{s}\right]$
238805 In an atom, an electron is moving with a speed of $600 \mathrm{~m} / \mathrm{s}$ with an accuracy of $0.005 \%$. Certainty with which position of the electron can be located is $\left(h=6.6 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1}\right.$, mass of electron $e_{\mathrm{m}}=9.1$ $\left.\times 10^{-31} \mathbf{k g}\right)$
238804 If a proton is accelerated to a velocity of $3 \times 10^7$ $\mathrm{m} . \mathrm{s}^{-1}$ which is accurate up to $\pm 0.5 \%$, then the uncertainty in its position will be [mass of proton $\left.=1.66 \times 10^{-27} \mathrm{~kg}, \mathrm{~h}=6.6 \times \overline{1^{-34}} \mathrm{~J} . \mathrm{s}\right]$
238805 In an atom, an electron is moving with a speed of $600 \mathrm{~m} / \mathrm{s}$ with an accuracy of $0.005 \%$. Certainty with which position of the electron can be located is $\left(h=6.6 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1}\right.$, mass of electron $e_{\mathrm{m}}=9.1$ $\left.\times 10^{-31} \mathbf{k g}\right)$