02. Dual Nature of Electron
Structure of Atom

238744 The de-Broglie wavelength $(\lambda)$ associated with a photoelectron varies with the frequency $(v)$ of the incident radiation as, $\left[v_0\right.$ is threshold frequency]

1 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{4}}}$
2 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{3}{2}}}$
3 $\lambda \propto \frac{1}{\left(v-v_0\right)}$
4 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{2}}}$
Structure of Atom

238746 The wavelength of a ball of mass $100 \mathrm{~g}$ moving with a velocity of $100 \mathrm{~ms}^{-1}$ be

1 $6.626 \times 10^{-30} \mathrm{~m}$
2 $6.626 \times 10^{-35} \mathrm{~m}$
3 $6.626 \times 10^{-32} \mathrm{~m}$
4 $6.626 \times 10^{-34} \mathrm{~m}$
Structure of Atom

238747 The energy ratio of a photon of wavelength $3000 \AA$ and $6000 \AA$ is

1 $1: 1$
2 $2: 1$
3 $1: 2$
4 $1: 4$
Structure of Atom

238748 A photon having a wavelength of $845 \AA$, causes the ionisation of $\mathrm{N}$ atom. What is the ionisation energy of $N$ ?

1 $1.4 \mathrm{~kJ}$
2 $1.4 \times 10^4 \mathrm{~kJ}$
3 $1.4 \times 10^2 \mathrm{~kJ}$
4 $1.4 \times 10^3 \mathrm{~kJ}$
Structure of Atom

238749 The increasing order of wavelength for $\mathrm{He}^{+}$ion, neutron (n) and electron (e) particles, moving with the same velocity is-

1 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}$
2 $\lambda_{\mathrm{He}^{+}}=\lambda_{\mathrm{n}}=\lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{e}}$
4 $\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{He}^{+}}$
Structure of Atom

238744 The de-Broglie wavelength $(\lambda)$ associated with a photoelectron varies with the frequency $(v)$ of the incident radiation as, $\left[v_0\right.$ is threshold frequency]

1 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{4}}}$
2 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{3}{2}}}$
3 $\lambda \propto \frac{1}{\left(v-v_0\right)}$
4 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{2}}}$
Structure of Atom

238746 The wavelength of a ball of mass $100 \mathrm{~g}$ moving with a velocity of $100 \mathrm{~ms}^{-1}$ be

1 $6.626 \times 10^{-30} \mathrm{~m}$
2 $6.626 \times 10^{-35} \mathrm{~m}$
3 $6.626 \times 10^{-32} \mathrm{~m}$
4 $6.626 \times 10^{-34} \mathrm{~m}$
Structure of Atom

238747 The energy ratio of a photon of wavelength $3000 \AA$ and $6000 \AA$ is

1 $1: 1$
2 $2: 1$
3 $1: 2$
4 $1: 4$
Structure of Atom

238748 A photon having a wavelength of $845 \AA$, causes the ionisation of $\mathrm{N}$ atom. What is the ionisation energy of $N$ ?

1 $1.4 \mathrm{~kJ}$
2 $1.4 \times 10^4 \mathrm{~kJ}$
3 $1.4 \times 10^2 \mathrm{~kJ}$
4 $1.4 \times 10^3 \mathrm{~kJ}$
Structure of Atom

238749 The increasing order of wavelength for $\mathrm{He}^{+}$ion, neutron (n) and electron (e) particles, moving with the same velocity is-

1 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}$
2 $\lambda_{\mathrm{He}^{+}}=\lambda_{\mathrm{n}}=\lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{e}}$
4 $\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{He}^{+}}$
Structure of Atom

238744 The de-Broglie wavelength $(\lambda)$ associated with a photoelectron varies with the frequency $(v)$ of the incident radiation as, $\left[v_0\right.$ is threshold frequency]

1 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{4}}}$
2 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{3}{2}}}$
3 $\lambda \propto \frac{1}{\left(v-v_0\right)}$
4 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{2}}}$
Structure of Atom

238746 The wavelength of a ball of mass $100 \mathrm{~g}$ moving with a velocity of $100 \mathrm{~ms}^{-1}$ be

1 $6.626 \times 10^{-30} \mathrm{~m}$
2 $6.626 \times 10^{-35} \mathrm{~m}$
3 $6.626 \times 10^{-32} \mathrm{~m}$
4 $6.626 \times 10^{-34} \mathrm{~m}$
Structure of Atom

238747 The energy ratio of a photon of wavelength $3000 \AA$ and $6000 \AA$ is

1 $1: 1$
2 $2: 1$
3 $1: 2$
4 $1: 4$
Structure of Atom

238748 A photon having a wavelength of $845 \AA$, causes the ionisation of $\mathrm{N}$ atom. What is the ionisation energy of $N$ ?

1 $1.4 \mathrm{~kJ}$
2 $1.4 \times 10^4 \mathrm{~kJ}$
3 $1.4 \times 10^2 \mathrm{~kJ}$
4 $1.4 \times 10^3 \mathrm{~kJ}$
Structure of Atom

238749 The increasing order of wavelength for $\mathrm{He}^{+}$ion, neutron (n) and electron (e) particles, moving with the same velocity is-

1 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}$
2 $\lambda_{\mathrm{He}^{+}}=\lambda_{\mathrm{n}}=\lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{e}}$
4 $\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{He}^{+}}$
Structure of Atom

238744 The de-Broglie wavelength $(\lambda)$ associated with a photoelectron varies with the frequency $(v)$ of the incident radiation as, $\left[v_0\right.$ is threshold frequency]

1 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{4}}}$
2 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{3}{2}}}$
3 $\lambda \propto \frac{1}{\left(v-v_0\right)}$
4 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{2}}}$
Structure of Atom

238746 The wavelength of a ball of mass $100 \mathrm{~g}$ moving with a velocity of $100 \mathrm{~ms}^{-1}$ be

1 $6.626 \times 10^{-30} \mathrm{~m}$
2 $6.626 \times 10^{-35} \mathrm{~m}$
3 $6.626 \times 10^{-32} \mathrm{~m}$
4 $6.626 \times 10^{-34} \mathrm{~m}$
Structure of Atom

238747 The energy ratio of a photon of wavelength $3000 \AA$ and $6000 \AA$ is

1 $1: 1$
2 $2: 1$
3 $1: 2$
4 $1: 4$
Structure of Atom

238748 A photon having a wavelength of $845 \AA$, causes the ionisation of $\mathrm{N}$ atom. What is the ionisation energy of $N$ ?

1 $1.4 \mathrm{~kJ}$
2 $1.4 \times 10^4 \mathrm{~kJ}$
3 $1.4 \times 10^2 \mathrm{~kJ}$
4 $1.4 \times 10^3 \mathrm{~kJ}$
Structure of Atom

238749 The increasing order of wavelength for $\mathrm{He}^{+}$ion, neutron (n) and electron (e) particles, moving with the same velocity is-

1 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}$
2 $\lambda_{\mathrm{He}^{+}}=\lambda_{\mathrm{n}}=\lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{e}}$
4 $\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{He}^{+}}$
Structure of Atom

238744 The de-Broglie wavelength $(\lambda)$ associated with a photoelectron varies with the frequency $(v)$ of the incident radiation as, $\left[v_0\right.$ is threshold frequency]

1 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{4}}}$
2 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{3}{2}}}$
3 $\lambda \propto \frac{1}{\left(v-v_0\right)}$
4 $\lambda \propto \frac{1}{\left(v-v_0\right)^{\frac{1}{2}}}$
Structure of Atom

238746 The wavelength of a ball of mass $100 \mathrm{~g}$ moving with a velocity of $100 \mathrm{~ms}^{-1}$ be

1 $6.626 \times 10^{-30} \mathrm{~m}$
2 $6.626 \times 10^{-35} \mathrm{~m}$
3 $6.626 \times 10^{-32} \mathrm{~m}$
4 $6.626 \times 10^{-34} \mathrm{~m}$
Structure of Atom

238747 The energy ratio of a photon of wavelength $3000 \AA$ and $6000 \AA$ is

1 $1: 1$
2 $2: 1$
3 $1: 2$
4 $1: 4$
Structure of Atom

238748 A photon having a wavelength of $845 \AA$, causes the ionisation of $\mathrm{N}$ atom. What is the ionisation energy of $N$ ?

1 $1.4 \mathrm{~kJ}$
2 $1.4 \times 10^4 \mathrm{~kJ}$
3 $1.4 \times 10^2 \mathrm{~kJ}$
4 $1.4 \times 10^3 \mathrm{~kJ}$
Structure of Atom

238749 The increasing order of wavelength for $\mathrm{He}^{+}$ion, neutron (n) and electron (e) particles, moving with the same velocity is-

1 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}$
2 $\lambda_{\mathrm{He}^{+}}=\lambda_{\mathrm{n}}=\lambda_{\mathrm{e}}$
3 $\lambda_{\mathrm{He}^{+}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{e}}$
4 $\lambda_{\mathrm{e}}<\lambda_{\mathrm{n}}<\lambda_{\mathrm{He}^{+}}$