238727 A bulb emitted electromagnetic radiation of $660 \mathrm{~nm}$ wavelength. The total energy of radiation is $3 \times 10^{-18} \mathrm{~J}$. The number of emitted photon will be: $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^8 \mathrm{~m} / \mathrm{s}\right)$
238727 A bulb emitted electromagnetic radiation of $660 \mathrm{~nm}$ wavelength. The total energy of radiation is $3 \times 10^{-18} \mathrm{~J}$. The number of emitted photon will be: $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^8 \mathrm{~m} / \mathrm{s}\right)$
238727 A bulb emitted electromagnetic radiation of $660 \mathrm{~nm}$ wavelength. The total energy of radiation is $3 \times 10^{-18} \mathrm{~J}$. The number of emitted photon will be: $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^8 \mathrm{~m} / \mathrm{s}\right)$
238727 A bulb emitted electromagnetic radiation of $660 \mathrm{~nm}$ wavelength. The total energy of radiation is $3 \times 10^{-18} \mathrm{~J}$. The number of emitted photon will be: $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^8 \mathrm{~m} / \mathrm{s}\right)$
238727 A bulb emitted electromagnetic radiation of $660 \mathrm{~nm}$ wavelength. The total energy of radiation is $3 \times 10^{-18} \mathrm{~J}$. The number of emitted photon will be: $\left(\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^8 \mathrm{~m} / \mathrm{s}\right)$