03. Laws of Chemical Combinations
Some Basic Concepts of Chemistry

228707 An example of a disproportionation reaction is

1 $2 \mathrm{MnO}_4^{-}+10 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{I}_2+8 \mathrm{H}_2 \mathrm{O}$
2 $2 \mathrm{NaBr}+\mathrm{Cl}_2 \longrightarrow 2 \mathrm{NaCl}+\mathrm{Br}_2$
Oxidation $+1 \quad+1$
state
This is just an example of a displacement reaction not a disproportionation reaction.
$\begin{array}{lcc}\text { (c) } 2 \mathrm{KMnO}_4 & \longrightarrow & \mathrm{K}_2 \mathrm{MnO}_4+ \\ \text { Oxidation }+7 & \mathrm{MnO}_2+\mathrm{O}_2\end{array}$ state
This indicate manganese is only getting reduced. So, this reaction is not a disproportionation reaction.
$\begin{array}{llc}(\mathrm{d}) \quad 2 \mathrm{CuBr} \longrightarrow & \mathrm{CuBr}_2+\mathrm{Cu} \\ \text { Oxidation }+1 & +2 & 0\end{array}$ state
In this reaction copper is getting both oxidized as well as reduced Therefore, this reaction is an example of a dioproportionation reaction.
3 $2 \mathrm{KMnO}_4 \rightarrow \mathrm{K}_2 \mathrm{MnO}_4+\mathrm{MnO}_2+\mathrm{O}_2$
4 $2 \mathrm{CuBr} \rightarrow \mathrm{CuBr}_2+\mathrm{Cu}$
Some Basic Concepts of Chemistry

228708 For a reaction,
identify di-hydrogen $\left(\mathrm{H}_2\right)$ as a limiting reagent in the following reaction mixture.

1 $56 \mathrm{~g}$ of $\mathrm{N}_2+10 \mathrm{~g}$ of $\mathrm{H}_2$
2 $35 \mathrm{~g}$ of $\mathrm{N}_2+8 \mathrm{~g}$ of $\mathrm{H}_2$.
$28 \mathrm{~g} \mathrm{~N}_2$ required $6 \mathrm{~g}$ of $\mathrm{H}_2$
$35 \mathrm{~g} \mathrm{~N}_2$ required $\frac{6 \mathrm{~g}}{28 \mathrm{~g}} \times 35 \mathrm{gH}_2$
$\Rightarrow \quad 7.5 \mathrm{~g}$ of $\mathrm{H}_2$
Here, $\mathrm{H}_2$ gas does not act as limiting reagent since $7.5 \mathrm{~g}$ of $\mathrm{H}_2$ is present in reaction mixture similarly, in option (c) and (d), $\mathrm{H}_2$ doesnot act as limiting reagent.
For $14 \mathrm{~g}$ of $\mathrm{N}_2+4 \mathrm{~g}$ of $\mathrm{H}_2$.
$28 \mathrm{~g}$ of $\mathrm{N}_2$ reacts will $6 \mathrm{~g}$ of $\mathrm{H}_2$.
$14 \mathrm{~g}$ of $\mathrm{N}_2$ reacts with $\frac{6}{28} \times 14 \mathrm{~g}$ of $\mathrm{H}_2 \Rightarrow 3 \mathrm{~g}$ of $\mathrm{H}_2$
For $28 \mathrm{~g}$ of $\mathrm{N}_2+6 \mathrm{~g}$ or $\mathrm{H}_2$,
i.e. $28 \mathrm{~g}$ of $\mathrm{N}_2$ reacts with $6 \mathrm{~g}$ of $\mathrm{H}_2$.
3 $14 \mathrm{~g}$ of $\mathrm{N}_2+4 \mathrm{~g}$ of $\mathrm{H}_2$
4 $28 \mathrm{~g}$ of $\mathrm{N}_2+6 \mathrm{~g}$ of $\mathrm{H}_2$
Some Basic Concepts of Chemistry

228711 Volume of water needed to mix with $10 \mathrm{~mL}$ $10 \mathrm{~N} \mathrm{HNO} \mathrm{H}_3$ to get $0.1 \mathrm{~N} \mathrm{HNO} \mathrm{HO}_3$ is

1 $1000 \mathrm{~mL}$
2 $990 \mathrm{~mL}$
3 $1010 \mathrm{~mL}$
4 $10 \mathrm{~mL}$
Some Basic Concepts of Chemistry

228713 On combustion of $x-g$ of ethanol in bomb calorimeter, y-joules of heat energy is produced. The heat of combustion of ethanol $\left(\Delta \mathbf{H}_{\text {comb }}\right)$ is-

1 $\Delta \mathrm{H}_{\text {comb }}=-\mathrm{x} . \mathrm{J}$
2 $\Delta \mathrm{H}_{\text {comb }}=-\mathrm{yJ}$
3 $\Delta \mathrm{H}_{\text {comb }}=-\frac{\mathrm{x}}{\mathrm{y}} \times 44 \mathrm{Jmol}^{-1}$
4 $\Delta \mathrm{H}_{\text {comb }}=-\frac{\mathrm{y}}{\mathrm{x}} \times 44 \mathrm{Jmol}^{-1}$
Some Basic Concepts of Chemistry

228707 An example of a disproportionation reaction is

1 $2 \mathrm{MnO}_4^{-}+10 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{I}_2+8 \mathrm{H}_2 \mathrm{O}$
2 $2 \mathrm{NaBr}+\mathrm{Cl}_2 \longrightarrow 2 \mathrm{NaCl}+\mathrm{Br}_2$
Oxidation $+1 \quad+1$
state
This is just an example of a displacement reaction not a disproportionation reaction.
$\begin{array}{lcc}\text { (c) } 2 \mathrm{KMnO}_4 & \longrightarrow & \mathrm{K}_2 \mathrm{MnO}_4+ \\ \text { Oxidation }+7 & \mathrm{MnO}_2+\mathrm{O}_2\end{array}$ state
This indicate manganese is only getting reduced. So, this reaction is not a disproportionation reaction.
$\begin{array}{llc}(\mathrm{d}) \quad 2 \mathrm{CuBr} \longrightarrow & \mathrm{CuBr}_2+\mathrm{Cu} \\ \text { Oxidation }+1 & +2 & 0\end{array}$ state
In this reaction copper is getting both oxidized as well as reduced Therefore, this reaction is an example of a dioproportionation reaction.
3 $2 \mathrm{KMnO}_4 \rightarrow \mathrm{K}_2 \mathrm{MnO}_4+\mathrm{MnO}_2+\mathrm{O}_2$
4 $2 \mathrm{CuBr} \rightarrow \mathrm{CuBr}_2+\mathrm{Cu}$
Some Basic Concepts of Chemistry

228708 For a reaction,
identify di-hydrogen $\left(\mathrm{H}_2\right)$ as a limiting reagent in the following reaction mixture.

1 $56 \mathrm{~g}$ of $\mathrm{N}_2+10 \mathrm{~g}$ of $\mathrm{H}_2$
2 $35 \mathrm{~g}$ of $\mathrm{N}_2+8 \mathrm{~g}$ of $\mathrm{H}_2$.
$28 \mathrm{~g} \mathrm{~N}_2$ required $6 \mathrm{~g}$ of $\mathrm{H}_2$
$35 \mathrm{~g} \mathrm{~N}_2$ required $\frac{6 \mathrm{~g}}{28 \mathrm{~g}} \times 35 \mathrm{gH}_2$
$\Rightarrow \quad 7.5 \mathrm{~g}$ of $\mathrm{H}_2$
Here, $\mathrm{H}_2$ gas does not act as limiting reagent since $7.5 \mathrm{~g}$ of $\mathrm{H}_2$ is present in reaction mixture similarly, in option (c) and (d), $\mathrm{H}_2$ doesnot act as limiting reagent.
For $14 \mathrm{~g}$ of $\mathrm{N}_2+4 \mathrm{~g}$ of $\mathrm{H}_2$.
$28 \mathrm{~g}$ of $\mathrm{N}_2$ reacts will $6 \mathrm{~g}$ of $\mathrm{H}_2$.
$14 \mathrm{~g}$ of $\mathrm{N}_2$ reacts with $\frac{6}{28} \times 14 \mathrm{~g}$ of $\mathrm{H}_2 \Rightarrow 3 \mathrm{~g}$ of $\mathrm{H}_2$
For $28 \mathrm{~g}$ of $\mathrm{N}_2+6 \mathrm{~g}$ or $\mathrm{H}_2$,
i.e. $28 \mathrm{~g}$ of $\mathrm{N}_2$ reacts with $6 \mathrm{~g}$ of $\mathrm{H}_2$.
3 $14 \mathrm{~g}$ of $\mathrm{N}_2+4 \mathrm{~g}$ of $\mathrm{H}_2$
4 $28 \mathrm{~g}$ of $\mathrm{N}_2+6 \mathrm{~g}$ of $\mathrm{H}_2$
Some Basic Concepts of Chemistry

228711 Volume of water needed to mix with $10 \mathrm{~mL}$ $10 \mathrm{~N} \mathrm{HNO} \mathrm{H}_3$ to get $0.1 \mathrm{~N} \mathrm{HNO} \mathrm{HO}_3$ is

1 $1000 \mathrm{~mL}$
2 $990 \mathrm{~mL}$
3 $1010 \mathrm{~mL}$
4 $10 \mathrm{~mL}$
Some Basic Concepts of Chemistry

228713 On combustion of $x-g$ of ethanol in bomb calorimeter, y-joules of heat energy is produced. The heat of combustion of ethanol $\left(\Delta \mathbf{H}_{\text {comb }}\right)$ is-

1 $\Delta \mathrm{H}_{\text {comb }}=-\mathrm{x} . \mathrm{J}$
2 $\Delta \mathrm{H}_{\text {comb }}=-\mathrm{yJ}$
3 $\Delta \mathrm{H}_{\text {comb }}=-\frac{\mathrm{x}}{\mathrm{y}} \times 44 \mathrm{Jmol}^{-1}$
4 $\Delta \mathrm{H}_{\text {comb }}=-\frac{\mathrm{y}}{\mathrm{x}} \times 44 \mathrm{Jmol}^{-1}$
Some Basic Concepts of Chemistry

228707 An example of a disproportionation reaction is

1 $2 \mathrm{MnO}_4^{-}+10 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{I}_2+8 \mathrm{H}_2 \mathrm{O}$
2 $2 \mathrm{NaBr}+\mathrm{Cl}_2 \longrightarrow 2 \mathrm{NaCl}+\mathrm{Br}_2$
Oxidation $+1 \quad+1$
state
This is just an example of a displacement reaction not a disproportionation reaction.
$\begin{array}{lcc}\text { (c) } 2 \mathrm{KMnO}_4 & \longrightarrow & \mathrm{K}_2 \mathrm{MnO}_4+ \\ \text { Oxidation }+7 & \mathrm{MnO}_2+\mathrm{O}_2\end{array}$ state
This indicate manganese is only getting reduced. So, this reaction is not a disproportionation reaction.
$\begin{array}{llc}(\mathrm{d}) \quad 2 \mathrm{CuBr} \longrightarrow & \mathrm{CuBr}_2+\mathrm{Cu} \\ \text { Oxidation }+1 & +2 & 0\end{array}$ state
In this reaction copper is getting both oxidized as well as reduced Therefore, this reaction is an example of a dioproportionation reaction.
3 $2 \mathrm{KMnO}_4 \rightarrow \mathrm{K}_2 \mathrm{MnO}_4+\mathrm{MnO}_2+\mathrm{O}_2$
4 $2 \mathrm{CuBr} \rightarrow \mathrm{CuBr}_2+\mathrm{Cu}$
Some Basic Concepts of Chemistry

228708 For a reaction,
identify di-hydrogen $\left(\mathrm{H}_2\right)$ as a limiting reagent in the following reaction mixture.

1 $56 \mathrm{~g}$ of $\mathrm{N}_2+10 \mathrm{~g}$ of $\mathrm{H}_2$
2 $35 \mathrm{~g}$ of $\mathrm{N}_2+8 \mathrm{~g}$ of $\mathrm{H}_2$.
$28 \mathrm{~g} \mathrm{~N}_2$ required $6 \mathrm{~g}$ of $\mathrm{H}_2$
$35 \mathrm{~g} \mathrm{~N}_2$ required $\frac{6 \mathrm{~g}}{28 \mathrm{~g}} \times 35 \mathrm{gH}_2$
$\Rightarrow \quad 7.5 \mathrm{~g}$ of $\mathrm{H}_2$
Here, $\mathrm{H}_2$ gas does not act as limiting reagent since $7.5 \mathrm{~g}$ of $\mathrm{H}_2$ is present in reaction mixture similarly, in option (c) and (d), $\mathrm{H}_2$ doesnot act as limiting reagent.
For $14 \mathrm{~g}$ of $\mathrm{N}_2+4 \mathrm{~g}$ of $\mathrm{H}_2$.
$28 \mathrm{~g}$ of $\mathrm{N}_2$ reacts will $6 \mathrm{~g}$ of $\mathrm{H}_2$.
$14 \mathrm{~g}$ of $\mathrm{N}_2$ reacts with $\frac{6}{28} \times 14 \mathrm{~g}$ of $\mathrm{H}_2 \Rightarrow 3 \mathrm{~g}$ of $\mathrm{H}_2$
For $28 \mathrm{~g}$ of $\mathrm{N}_2+6 \mathrm{~g}$ or $\mathrm{H}_2$,
i.e. $28 \mathrm{~g}$ of $\mathrm{N}_2$ reacts with $6 \mathrm{~g}$ of $\mathrm{H}_2$.
3 $14 \mathrm{~g}$ of $\mathrm{N}_2+4 \mathrm{~g}$ of $\mathrm{H}_2$
4 $28 \mathrm{~g}$ of $\mathrm{N}_2+6 \mathrm{~g}$ of $\mathrm{H}_2$
Some Basic Concepts of Chemistry

228711 Volume of water needed to mix with $10 \mathrm{~mL}$ $10 \mathrm{~N} \mathrm{HNO} \mathrm{H}_3$ to get $0.1 \mathrm{~N} \mathrm{HNO} \mathrm{HO}_3$ is

1 $1000 \mathrm{~mL}$
2 $990 \mathrm{~mL}$
3 $1010 \mathrm{~mL}$
4 $10 \mathrm{~mL}$
Some Basic Concepts of Chemistry

228713 On combustion of $x-g$ of ethanol in bomb calorimeter, y-joules of heat energy is produced. The heat of combustion of ethanol $\left(\Delta \mathbf{H}_{\text {comb }}\right)$ is-

1 $\Delta \mathrm{H}_{\text {comb }}=-\mathrm{x} . \mathrm{J}$
2 $\Delta \mathrm{H}_{\text {comb }}=-\mathrm{yJ}$
3 $\Delta \mathrm{H}_{\text {comb }}=-\frac{\mathrm{x}}{\mathrm{y}} \times 44 \mathrm{Jmol}^{-1}$
4 $\Delta \mathrm{H}_{\text {comb }}=-\frac{\mathrm{y}}{\mathrm{x}} \times 44 \mathrm{Jmol}^{-1}$
Some Basic Concepts of Chemistry

228707 An example of a disproportionation reaction is

1 $2 \mathrm{MnO}_4^{-}+10 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{I}_2+8 \mathrm{H}_2 \mathrm{O}$
2 $2 \mathrm{NaBr}+\mathrm{Cl}_2 \longrightarrow 2 \mathrm{NaCl}+\mathrm{Br}_2$
Oxidation $+1 \quad+1$
state
This is just an example of a displacement reaction not a disproportionation reaction.
$\begin{array}{lcc}\text { (c) } 2 \mathrm{KMnO}_4 & \longrightarrow & \mathrm{K}_2 \mathrm{MnO}_4+ \\ \text { Oxidation }+7 & \mathrm{MnO}_2+\mathrm{O}_2\end{array}$ state
This indicate manganese is only getting reduced. So, this reaction is not a disproportionation reaction.
$\begin{array}{llc}(\mathrm{d}) \quad 2 \mathrm{CuBr} \longrightarrow & \mathrm{CuBr}_2+\mathrm{Cu} \\ \text { Oxidation }+1 & +2 & 0\end{array}$ state
In this reaction copper is getting both oxidized as well as reduced Therefore, this reaction is an example of a dioproportionation reaction.
3 $2 \mathrm{KMnO}_4 \rightarrow \mathrm{K}_2 \mathrm{MnO}_4+\mathrm{MnO}_2+\mathrm{O}_2$
4 $2 \mathrm{CuBr} \rightarrow \mathrm{CuBr}_2+\mathrm{Cu}$
Some Basic Concepts of Chemistry

228708 For a reaction,
identify di-hydrogen $\left(\mathrm{H}_2\right)$ as a limiting reagent in the following reaction mixture.

1 $56 \mathrm{~g}$ of $\mathrm{N}_2+10 \mathrm{~g}$ of $\mathrm{H}_2$
2 $35 \mathrm{~g}$ of $\mathrm{N}_2+8 \mathrm{~g}$ of $\mathrm{H}_2$.
$28 \mathrm{~g} \mathrm{~N}_2$ required $6 \mathrm{~g}$ of $\mathrm{H}_2$
$35 \mathrm{~g} \mathrm{~N}_2$ required $\frac{6 \mathrm{~g}}{28 \mathrm{~g}} \times 35 \mathrm{gH}_2$
$\Rightarrow \quad 7.5 \mathrm{~g}$ of $\mathrm{H}_2$
Here, $\mathrm{H}_2$ gas does not act as limiting reagent since $7.5 \mathrm{~g}$ of $\mathrm{H}_2$ is present in reaction mixture similarly, in option (c) and (d), $\mathrm{H}_2$ doesnot act as limiting reagent.
For $14 \mathrm{~g}$ of $\mathrm{N}_2+4 \mathrm{~g}$ of $\mathrm{H}_2$.
$28 \mathrm{~g}$ of $\mathrm{N}_2$ reacts will $6 \mathrm{~g}$ of $\mathrm{H}_2$.
$14 \mathrm{~g}$ of $\mathrm{N}_2$ reacts with $\frac{6}{28} \times 14 \mathrm{~g}$ of $\mathrm{H}_2 \Rightarrow 3 \mathrm{~g}$ of $\mathrm{H}_2$
For $28 \mathrm{~g}$ of $\mathrm{N}_2+6 \mathrm{~g}$ or $\mathrm{H}_2$,
i.e. $28 \mathrm{~g}$ of $\mathrm{N}_2$ reacts with $6 \mathrm{~g}$ of $\mathrm{H}_2$.
3 $14 \mathrm{~g}$ of $\mathrm{N}_2+4 \mathrm{~g}$ of $\mathrm{H}_2$
4 $28 \mathrm{~g}$ of $\mathrm{N}_2+6 \mathrm{~g}$ of $\mathrm{H}_2$
Some Basic Concepts of Chemistry

228711 Volume of water needed to mix with $10 \mathrm{~mL}$ $10 \mathrm{~N} \mathrm{HNO} \mathrm{H}_3$ to get $0.1 \mathrm{~N} \mathrm{HNO} \mathrm{HO}_3$ is

1 $1000 \mathrm{~mL}$
2 $990 \mathrm{~mL}$
3 $1010 \mathrm{~mL}$
4 $10 \mathrm{~mL}$
Some Basic Concepts of Chemistry

228713 On combustion of $x-g$ of ethanol in bomb calorimeter, y-joules of heat energy is produced. The heat of combustion of ethanol $\left(\Delta \mathbf{H}_{\text {comb }}\right)$ is-

1 $\Delta \mathrm{H}_{\text {comb }}=-\mathrm{x} . \mathrm{J}$
2 $\Delta \mathrm{H}_{\text {comb }}=-\mathrm{yJ}$
3 $\Delta \mathrm{H}_{\text {comb }}=-\frac{\mathrm{x}}{\mathrm{y}} \times 44 \mathrm{Jmol}^{-1}$
4 $\Delta \mathrm{H}_{\text {comb }}=-\frac{\mathrm{y}}{\mathrm{x}} \times 44 \mathrm{Jmol}^{-1}$