228339
Production of iron in blast furnace follows the following equation:
$\mathrm{Fe}_3 \mathrm{O}_4(\mathrm{~s})+4 \mathrm{CO}(\mathrm{g}) \rightarrow 3 \mathrm{Fe}(1)+4 \mathrm{CO}_2(\mathrm{~g})$
When $4.640 \mathrm{~kg}$ of $\mathrm{Fe}_3 \mathrm{O}_4$ and $2.520 \mathrm{~kg}$ of $\mathrm{CO}$ are allowed to react then the amount of iron (in g) produced is:
[Given: Molar Atomic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Fe}=$ 56
Molar Atomic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathbf{O}=16$
Molar Atomic mass $\left.\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{C}=12\right]$
228339
Production of iron in blast furnace follows the following equation:
$\mathrm{Fe}_3 \mathrm{O}_4(\mathrm{~s})+4 \mathrm{CO}(\mathrm{g}) \rightarrow 3 \mathrm{Fe}(1)+4 \mathrm{CO}_2(\mathrm{~g})$
When $4.640 \mathrm{~kg}$ of $\mathrm{Fe}_3 \mathrm{O}_4$ and $2.520 \mathrm{~kg}$ of $\mathrm{CO}$ are allowed to react then the amount of iron (in g) produced is:
[Given: Molar Atomic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Fe}=$ 56
Molar Atomic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathbf{O}=16$
Molar Atomic mass $\left.\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{C}=12\right]$
228339
Production of iron in blast furnace follows the following equation:
$\mathrm{Fe}_3 \mathrm{O}_4(\mathrm{~s})+4 \mathrm{CO}(\mathrm{g}) \rightarrow 3 \mathrm{Fe}(1)+4 \mathrm{CO}_2(\mathrm{~g})$
When $4.640 \mathrm{~kg}$ of $\mathrm{Fe}_3 \mathrm{O}_4$ and $2.520 \mathrm{~kg}$ of $\mathrm{CO}$ are allowed to react then the amount of iron (in g) produced is:
[Given: Molar Atomic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Fe}=$ 56
Molar Atomic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathbf{O}=16$
Molar Atomic mass $\left.\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{C}=12\right]$
228339
Production of iron in blast furnace follows the following equation:
$\mathrm{Fe}_3 \mathrm{O}_4(\mathrm{~s})+4 \mathrm{CO}(\mathrm{g}) \rightarrow 3 \mathrm{Fe}(1)+4 \mathrm{CO}_2(\mathrm{~g})$
When $4.640 \mathrm{~kg}$ of $\mathrm{Fe}_3 \mathrm{O}_4$ and $2.520 \mathrm{~kg}$ of $\mathrm{CO}$ are allowed to react then the amount of iron (in g) produced is:
[Given: Molar Atomic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{Fe}=$ 56
Molar Atomic mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathbf{O}=16$
Molar Atomic mass $\left.\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{C}=12\right]$