NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Some Basic Concepts of Chemistry
228213
Which one of the following set of units represents the smallest and largest amount of energy respectively?
1 $\mathrm{J}$ and erg
2 erg and cal
3 cal and $\mathrm{eV}$
4 lit-atom and $\mathrm{J}$
5 $\mathrm{eV}$ and lit-atom
Explanation:
: SI unit of energy is Joule. Converting other units of energy into joule, we find- $\begin{aligned} & 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\ & 1 \mathrm{cal}=4.186 \mathrm{~J} \\ & 1 \mathrm{erg}=10^{-7} \mathrm{~J} \\ & 1 \text { lit - atom }=101.3 \mathrm{~J} \end{aligned}$ Smallest and largest amount of energy are $\mathrm{eV}$ and litatom respectively.
Kerala-CEE-2007
Some Basic Concepts of Chemistry
228215
The value of amu is which of the following?
1 $1.57 \times 10^{-24} \mathrm{~kg}$
2 $1.66 \times 10^{-24} \mathrm{~kg}$
3 $1.99 \times 10^{-23} \mathrm{~kg}$
4 $1.66 \times 10^{-27} \mathrm{~kg}$
Explanation:
$1 \mathrm{amu}$ is defined as $\left(\frac{1}{12}\right)^{\text {th }}$ of the mass one carbon-12 isotope atom. As per the definition of atomic mass unit, $\begin{aligned} & 1 \mathrm{amu}=\frac{1}{12} \frac{12}{\mathrm{~N}_{\mathrm{A}}} \mathrm{g} \\ & 1 \mathrm{amu}=\frac{1}{6.023 \times 10^{23}} \mathrm{~g} \\ & 1 \mathrm{amu}=1.6 \times 10^{-27} \mathrm{~kg} \end{aligned}$
UP CPMT-2003
Some Basic Concepts of Chemistry
228218
The dimensions of pressure are the same as that of 2. Atomic, Molecular and
1 force per unit volume
2 energy per unit volume
3 force
4 energy
Explanation:
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Mass } \times \text { acceleration }}{\text { Area }}$ Dimensional formula, $=\frac{\mathrm{M} \times \mathrm{LT}^{-2}}{\mathrm{~L}^2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Energy $=$ work $=$ force $\times$ displacement Energy per unit volume $=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}$ $=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Dimension of pressure is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ which is same as the dimension of energy per unit volume. Equivalent Masses
NEET-1995
Some Basic Concepts of Chemistry
228219
The dimensions of pressure are the same as that of 2. Atomic, Molecular and
1 force per unit volume
2 energy per unit volume
3 force
4 energy
Explanation:
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Mass } \times \text { acceleration }}{\text { Area }}$ Dimensional formula, $=\frac{\mathrm{M} \times \mathrm{LT}^{-2}}{\mathrm{~L}^2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Energy $=$ work $=$ force $\times$ displacement Energy per unit volume $=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}$ $=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Dimension of pressure is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ which is same as the dimension of energy per unit volume. Equivalent Masses
228213
Which one of the following set of units represents the smallest and largest amount of energy respectively?
1 $\mathrm{J}$ and erg
2 erg and cal
3 cal and $\mathrm{eV}$
4 lit-atom and $\mathrm{J}$
5 $\mathrm{eV}$ and lit-atom
Explanation:
: SI unit of energy is Joule. Converting other units of energy into joule, we find- $\begin{aligned} & 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\ & 1 \mathrm{cal}=4.186 \mathrm{~J} \\ & 1 \mathrm{erg}=10^{-7} \mathrm{~J} \\ & 1 \text { lit - atom }=101.3 \mathrm{~J} \end{aligned}$ Smallest and largest amount of energy are $\mathrm{eV}$ and litatom respectively.
Kerala-CEE-2007
Some Basic Concepts of Chemistry
228215
The value of amu is which of the following?
1 $1.57 \times 10^{-24} \mathrm{~kg}$
2 $1.66 \times 10^{-24} \mathrm{~kg}$
3 $1.99 \times 10^{-23} \mathrm{~kg}$
4 $1.66 \times 10^{-27} \mathrm{~kg}$
Explanation:
$1 \mathrm{amu}$ is defined as $\left(\frac{1}{12}\right)^{\text {th }}$ of the mass one carbon-12 isotope atom. As per the definition of atomic mass unit, $\begin{aligned} & 1 \mathrm{amu}=\frac{1}{12} \frac{12}{\mathrm{~N}_{\mathrm{A}}} \mathrm{g} \\ & 1 \mathrm{amu}=\frac{1}{6.023 \times 10^{23}} \mathrm{~g} \\ & 1 \mathrm{amu}=1.6 \times 10^{-27} \mathrm{~kg} \end{aligned}$
UP CPMT-2003
Some Basic Concepts of Chemistry
228218
The dimensions of pressure are the same as that of 2. Atomic, Molecular and
1 force per unit volume
2 energy per unit volume
3 force
4 energy
Explanation:
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Mass } \times \text { acceleration }}{\text { Area }}$ Dimensional formula, $=\frac{\mathrm{M} \times \mathrm{LT}^{-2}}{\mathrm{~L}^2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Energy $=$ work $=$ force $\times$ displacement Energy per unit volume $=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}$ $=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Dimension of pressure is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ which is same as the dimension of energy per unit volume. Equivalent Masses
NEET-1995
Some Basic Concepts of Chemistry
228219
The dimensions of pressure are the same as that of 2. Atomic, Molecular and
1 force per unit volume
2 energy per unit volume
3 force
4 energy
Explanation:
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Mass } \times \text { acceleration }}{\text { Area }}$ Dimensional formula, $=\frac{\mathrm{M} \times \mathrm{LT}^{-2}}{\mathrm{~L}^2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Energy $=$ work $=$ force $\times$ displacement Energy per unit volume $=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}$ $=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Dimension of pressure is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ which is same as the dimension of energy per unit volume. Equivalent Masses
228213
Which one of the following set of units represents the smallest and largest amount of energy respectively?
1 $\mathrm{J}$ and erg
2 erg and cal
3 cal and $\mathrm{eV}$
4 lit-atom and $\mathrm{J}$
5 $\mathrm{eV}$ and lit-atom
Explanation:
: SI unit of energy is Joule. Converting other units of energy into joule, we find- $\begin{aligned} & 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\ & 1 \mathrm{cal}=4.186 \mathrm{~J} \\ & 1 \mathrm{erg}=10^{-7} \mathrm{~J} \\ & 1 \text { lit - atom }=101.3 \mathrm{~J} \end{aligned}$ Smallest and largest amount of energy are $\mathrm{eV}$ and litatom respectively.
Kerala-CEE-2007
Some Basic Concepts of Chemistry
228215
The value of amu is which of the following?
1 $1.57 \times 10^{-24} \mathrm{~kg}$
2 $1.66 \times 10^{-24} \mathrm{~kg}$
3 $1.99 \times 10^{-23} \mathrm{~kg}$
4 $1.66 \times 10^{-27} \mathrm{~kg}$
Explanation:
$1 \mathrm{amu}$ is defined as $\left(\frac{1}{12}\right)^{\text {th }}$ of the mass one carbon-12 isotope atom. As per the definition of atomic mass unit, $\begin{aligned} & 1 \mathrm{amu}=\frac{1}{12} \frac{12}{\mathrm{~N}_{\mathrm{A}}} \mathrm{g} \\ & 1 \mathrm{amu}=\frac{1}{6.023 \times 10^{23}} \mathrm{~g} \\ & 1 \mathrm{amu}=1.6 \times 10^{-27} \mathrm{~kg} \end{aligned}$
UP CPMT-2003
Some Basic Concepts of Chemistry
228218
The dimensions of pressure are the same as that of 2. Atomic, Molecular and
1 force per unit volume
2 energy per unit volume
3 force
4 energy
Explanation:
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Mass } \times \text { acceleration }}{\text { Area }}$ Dimensional formula, $=\frac{\mathrm{M} \times \mathrm{LT}^{-2}}{\mathrm{~L}^2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Energy $=$ work $=$ force $\times$ displacement Energy per unit volume $=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}$ $=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Dimension of pressure is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ which is same as the dimension of energy per unit volume. Equivalent Masses
NEET-1995
Some Basic Concepts of Chemistry
228219
The dimensions of pressure are the same as that of 2. Atomic, Molecular and
1 force per unit volume
2 energy per unit volume
3 force
4 energy
Explanation:
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Mass } \times \text { acceleration }}{\text { Area }}$ Dimensional formula, $=\frac{\mathrm{M} \times \mathrm{LT}^{-2}}{\mathrm{~L}^2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Energy $=$ work $=$ force $\times$ displacement Energy per unit volume $=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}$ $=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Dimension of pressure is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ which is same as the dimension of energy per unit volume. Equivalent Masses
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Some Basic Concepts of Chemistry
228213
Which one of the following set of units represents the smallest and largest amount of energy respectively?
1 $\mathrm{J}$ and erg
2 erg and cal
3 cal and $\mathrm{eV}$
4 lit-atom and $\mathrm{J}$
5 $\mathrm{eV}$ and lit-atom
Explanation:
: SI unit of energy is Joule. Converting other units of energy into joule, we find- $\begin{aligned} & 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\ & 1 \mathrm{cal}=4.186 \mathrm{~J} \\ & 1 \mathrm{erg}=10^{-7} \mathrm{~J} \\ & 1 \text { lit - atom }=101.3 \mathrm{~J} \end{aligned}$ Smallest and largest amount of energy are $\mathrm{eV}$ and litatom respectively.
Kerala-CEE-2007
Some Basic Concepts of Chemistry
228215
The value of amu is which of the following?
1 $1.57 \times 10^{-24} \mathrm{~kg}$
2 $1.66 \times 10^{-24} \mathrm{~kg}$
3 $1.99 \times 10^{-23} \mathrm{~kg}$
4 $1.66 \times 10^{-27} \mathrm{~kg}$
Explanation:
$1 \mathrm{amu}$ is defined as $\left(\frac{1}{12}\right)^{\text {th }}$ of the mass one carbon-12 isotope atom. As per the definition of atomic mass unit, $\begin{aligned} & 1 \mathrm{amu}=\frac{1}{12} \frac{12}{\mathrm{~N}_{\mathrm{A}}} \mathrm{g} \\ & 1 \mathrm{amu}=\frac{1}{6.023 \times 10^{23}} \mathrm{~g} \\ & 1 \mathrm{amu}=1.6 \times 10^{-27} \mathrm{~kg} \end{aligned}$
UP CPMT-2003
Some Basic Concepts of Chemistry
228218
The dimensions of pressure are the same as that of 2. Atomic, Molecular and
1 force per unit volume
2 energy per unit volume
3 force
4 energy
Explanation:
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Mass } \times \text { acceleration }}{\text { Area }}$ Dimensional formula, $=\frac{\mathrm{M} \times \mathrm{LT}^{-2}}{\mathrm{~L}^2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Energy $=$ work $=$ force $\times$ displacement Energy per unit volume $=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}$ $=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Dimension of pressure is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ which is same as the dimension of energy per unit volume. Equivalent Masses
NEET-1995
Some Basic Concepts of Chemistry
228219
The dimensions of pressure are the same as that of 2. Atomic, Molecular and
1 force per unit volume
2 energy per unit volume
3 force
4 energy
Explanation:
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\text { Mass } \times \text { acceleration }}{\text { Area }}$ Dimensional formula, $=\frac{\mathrm{M} \times \mathrm{LT}^{-2}}{\mathrm{~L}^2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Energy $=$ work $=$ force $\times$ displacement Energy per unit volume $=\frac{\mathrm{ML}^2 \mathrm{~T}^{-2}}{\mathrm{~L}^3}$ $=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ Dimension of pressure is $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ which is same as the dimension of energy per unit volume. Equivalent Masses