Newton's Law of Motion and It's Application
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
LAWS OF MOTION (ADDITIONAL)

371723 A ball of mass \(0.2 \mathrm{~kg}\) moving with a speed of 20 \(\mathrm{m} / \mathrm{s}\) is brought to rest in \(0.1 \mathrm{~s}\). The average force applied to the ball is

1 \(20 \mathrm{~N}\)
2 \(30 \mathrm{~N}\)
3 \(40 \mathrm{~N}\)
4 \(60 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371724 Imagine a person standing on a weighing machine placed inside an elevator. The elevator first accelerates, then moves with a constant velocity and finally decelerates to stop. The maximum and minimum weight recorded are \(80 \mathrm{~kg}\) and \(64 \mathrm{~kg}\) respectively. Find out the true weight of that person considering \(g=10 \mathrm{~m} / \mathrm{s}^{2}\)

1 \(70 \mathrm{~kg}\)
2 \(85 \mathrm{~kg}\)
3 \(72 \mathrm{~kg}\)
4 \(65 \mathrm{~kg}\)
LAWS OF MOTION (ADDITIONAL)

371725 A bullet of mass \(m\) enters a wooden block of length \(L\) at a speed \(v_{1}\) and emerges out of block with a speed \(v_{2}\). If \(\bar{F}\) is the average force which impeded its motion (Assume uniform deceleration inside the block)

1 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{2 \mathrm{~L}}\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)\)
2 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{4 \mathrm{~L}}\left(\mathrm{v}_{2}{ }^{2}+\mathrm{v}_{1}{ }^{2}\right)\)
3 \(\overline{\mathrm{F}}=2 \frac{\mathrm{m}}{\mathrm{L}}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)^{2}\)
4 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{2 \mathrm{~L}}\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right)^{2}\)
LAWS OF MOTION (ADDITIONAL)

371726 Find the position of the particle which starts from rest at time \(t=10 \mathrm{~s}\). given the force acting on the particle with a mass of \(50 \mathrm{~g}\) is \((5 \hat{\mathbf{i}}+\mathbf{1 0} \hat{\mathbf{j}}) \mathbf{N}\)

1 \((10000 \hat{\mathrm{i}}+5000 \hat{\mathrm{j}}) \mathrm{m}\)
2 \((5000 \hat{\mathrm{i}}+5000 \hat{\mathrm{j}}) \mathrm{m}\)
3 \((5000 \hat{\mathrm{i}}+10000 \hat{\mathrm{j}}) \mathrm{m}\)
4 \((10000 \hat{\mathrm{i}}+10000 \hat{\mathrm{j}}) \mathrm{m}\)
LAWS OF MOTION (ADDITIONAL)

371723 A ball of mass \(0.2 \mathrm{~kg}\) moving with a speed of 20 \(\mathrm{m} / \mathrm{s}\) is brought to rest in \(0.1 \mathrm{~s}\). The average force applied to the ball is

1 \(20 \mathrm{~N}\)
2 \(30 \mathrm{~N}\)
3 \(40 \mathrm{~N}\)
4 \(60 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371724 Imagine a person standing on a weighing machine placed inside an elevator. The elevator first accelerates, then moves with a constant velocity and finally decelerates to stop. The maximum and minimum weight recorded are \(80 \mathrm{~kg}\) and \(64 \mathrm{~kg}\) respectively. Find out the true weight of that person considering \(g=10 \mathrm{~m} / \mathrm{s}^{2}\)

1 \(70 \mathrm{~kg}\)
2 \(85 \mathrm{~kg}\)
3 \(72 \mathrm{~kg}\)
4 \(65 \mathrm{~kg}\)
LAWS OF MOTION (ADDITIONAL)

371725 A bullet of mass \(m\) enters a wooden block of length \(L\) at a speed \(v_{1}\) and emerges out of block with a speed \(v_{2}\). If \(\bar{F}\) is the average force which impeded its motion (Assume uniform deceleration inside the block)

1 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{2 \mathrm{~L}}\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)\)
2 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{4 \mathrm{~L}}\left(\mathrm{v}_{2}{ }^{2}+\mathrm{v}_{1}{ }^{2}\right)\)
3 \(\overline{\mathrm{F}}=2 \frac{\mathrm{m}}{\mathrm{L}}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)^{2}\)
4 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{2 \mathrm{~L}}\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right)^{2}\)
LAWS OF MOTION (ADDITIONAL)

371726 Find the position of the particle which starts from rest at time \(t=10 \mathrm{~s}\). given the force acting on the particle with a mass of \(50 \mathrm{~g}\) is \((5 \hat{\mathbf{i}}+\mathbf{1 0} \hat{\mathbf{j}}) \mathbf{N}\)

1 \((10000 \hat{\mathrm{i}}+5000 \hat{\mathrm{j}}) \mathrm{m}\)
2 \((5000 \hat{\mathrm{i}}+5000 \hat{\mathrm{j}}) \mathrm{m}\)
3 \((5000 \hat{\mathrm{i}}+10000 \hat{\mathrm{j}}) \mathrm{m}\)
4 \((10000 \hat{\mathrm{i}}+10000 \hat{\mathrm{j}}) \mathrm{m}\)
LAWS OF MOTION (ADDITIONAL)

371723 A ball of mass \(0.2 \mathrm{~kg}\) moving with a speed of 20 \(\mathrm{m} / \mathrm{s}\) is brought to rest in \(0.1 \mathrm{~s}\). The average force applied to the ball is

1 \(20 \mathrm{~N}\)
2 \(30 \mathrm{~N}\)
3 \(40 \mathrm{~N}\)
4 \(60 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371724 Imagine a person standing on a weighing machine placed inside an elevator. The elevator first accelerates, then moves with a constant velocity and finally decelerates to stop. The maximum and minimum weight recorded are \(80 \mathrm{~kg}\) and \(64 \mathrm{~kg}\) respectively. Find out the true weight of that person considering \(g=10 \mathrm{~m} / \mathrm{s}^{2}\)

1 \(70 \mathrm{~kg}\)
2 \(85 \mathrm{~kg}\)
3 \(72 \mathrm{~kg}\)
4 \(65 \mathrm{~kg}\)
LAWS OF MOTION (ADDITIONAL)

371725 A bullet of mass \(m\) enters a wooden block of length \(L\) at a speed \(v_{1}\) and emerges out of block with a speed \(v_{2}\). If \(\bar{F}\) is the average force which impeded its motion (Assume uniform deceleration inside the block)

1 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{2 \mathrm{~L}}\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)\)
2 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{4 \mathrm{~L}}\left(\mathrm{v}_{2}{ }^{2}+\mathrm{v}_{1}{ }^{2}\right)\)
3 \(\overline{\mathrm{F}}=2 \frac{\mathrm{m}}{\mathrm{L}}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)^{2}\)
4 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{2 \mathrm{~L}}\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right)^{2}\)
LAWS OF MOTION (ADDITIONAL)

371726 Find the position of the particle which starts from rest at time \(t=10 \mathrm{~s}\). given the force acting on the particle with a mass of \(50 \mathrm{~g}\) is \((5 \hat{\mathbf{i}}+\mathbf{1 0} \hat{\mathbf{j}}) \mathbf{N}\)

1 \((10000 \hat{\mathrm{i}}+5000 \hat{\mathrm{j}}) \mathrm{m}\)
2 \((5000 \hat{\mathrm{i}}+5000 \hat{\mathrm{j}}) \mathrm{m}\)
3 \((5000 \hat{\mathrm{i}}+10000 \hat{\mathrm{j}}) \mathrm{m}\)
4 \((10000 \hat{\mathrm{i}}+10000 \hat{\mathrm{j}}) \mathrm{m}\)
LAWS OF MOTION (ADDITIONAL)

371723 A ball of mass \(0.2 \mathrm{~kg}\) moving with a speed of 20 \(\mathrm{m} / \mathrm{s}\) is brought to rest in \(0.1 \mathrm{~s}\). The average force applied to the ball is

1 \(20 \mathrm{~N}\)
2 \(30 \mathrm{~N}\)
3 \(40 \mathrm{~N}\)
4 \(60 \mathrm{~N}\)
LAWS OF MOTION (ADDITIONAL)

371724 Imagine a person standing on a weighing machine placed inside an elevator. The elevator first accelerates, then moves with a constant velocity and finally decelerates to stop. The maximum and minimum weight recorded are \(80 \mathrm{~kg}\) and \(64 \mathrm{~kg}\) respectively. Find out the true weight of that person considering \(g=10 \mathrm{~m} / \mathrm{s}^{2}\)

1 \(70 \mathrm{~kg}\)
2 \(85 \mathrm{~kg}\)
3 \(72 \mathrm{~kg}\)
4 \(65 \mathrm{~kg}\)
LAWS OF MOTION (ADDITIONAL)

371725 A bullet of mass \(m\) enters a wooden block of length \(L\) at a speed \(v_{1}\) and emerges out of block with a speed \(v_{2}\). If \(\bar{F}\) is the average force which impeded its motion (Assume uniform deceleration inside the block)

1 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{2 \mathrm{~L}}\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)\)
2 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{4 \mathrm{~L}}\left(\mathrm{v}_{2}{ }^{2}+\mathrm{v}_{1}{ }^{2}\right)\)
3 \(\overline{\mathrm{F}}=2 \frac{\mathrm{m}}{\mathrm{L}}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)^{2}\)
4 \(\overline{\mathrm{F}}=\frac{\mathrm{m}}{2 \mathrm{~L}}\left(\mathrm{v}_{2}+\mathrm{v}_{1}\right)^{2}\)
LAWS OF MOTION (ADDITIONAL)

371726 Find the position of the particle which starts from rest at time \(t=10 \mathrm{~s}\). given the force acting on the particle with a mass of \(50 \mathrm{~g}\) is \((5 \hat{\mathbf{i}}+\mathbf{1 0} \hat{\mathbf{j}}) \mathbf{N}\)

1 \((10000 \hat{\mathrm{i}}+5000 \hat{\mathrm{j}}) \mathrm{m}\)
2 \((5000 \hat{\mathrm{i}}+5000 \hat{\mathrm{j}}) \mathrm{m}\)
3 \((5000 \hat{\mathrm{i}}+10000 \hat{\mathrm{j}}) \mathrm{m}\)
4 \((10000 \hat{\mathrm{i}}+10000 \hat{\mathrm{j}}) \mathrm{m}\)