Young’s Double Slit Experiment
PHXII10:WAVE OPTICS

368085 In Young’s experiment intensity at a point on the screen is \(75\% \) of the maximum value. Minimum phase difference between the waves arriving at this point from the two slits will be

1 \({30^ \circ }\)
2 \({45^ \circ }\)
3 \({60^ \circ }\)
4 \({135^ \circ }\)
PHXII10:WAVE OPTICS

368086 In a double slit experiment, the slit seperation is \(0.20\;cm\) and the slit to screen distance is \(100\;cm\). The positions of the first three minima, if wavellength of the source is \(500\;nm\) is

1 \( \pm 0.125\;cm, \pm 0.375\;cm, \pm 0.625\;cm\)
2 \( \pm 0.025\;cm, \pm 0.075\;cm, \pm 0.125\;cm\)
3 \( \pm 12.5\;cm, \pm 37.5\;cm, \pm 62.5\;cm\)
4 \( \pm 1.25\;cm, \pm 3.75\;cm, \pm 6.25\;cm\)
PHXII10:WAVE OPTICS

368087 In the young’s double slit experiment using a monochromatic light of wavelength \(\lambda \), the path difference (\(n\) is an integer) corresponding to any point having half the peak intensity is:

1 \((2n + 1)\frac{\lambda }{4}\)
2 \((2n + 1)\frac{\lambda }{2}\)
3 \((2n + 1)\frac{\lambda }{{16}}\)
4 \((2n + 1)\frac{\lambda }{8}\)
PHXII10:WAVE OPTICS

368088 If the slits in Young’s double slit experiment are of unequal width, then

1 The bright fringes will have unequal spacing
2 The bright fringes will have unequal brightness
3 The fringes do not appear
4 The dark fringes are not perfectly dark.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII10:WAVE OPTICS

368085 In Young’s experiment intensity at a point on the screen is \(75\% \) of the maximum value. Minimum phase difference between the waves arriving at this point from the two slits will be

1 \({30^ \circ }\)
2 \({45^ \circ }\)
3 \({60^ \circ }\)
4 \({135^ \circ }\)
PHXII10:WAVE OPTICS

368086 In a double slit experiment, the slit seperation is \(0.20\;cm\) and the slit to screen distance is \(100\;cm\). The positions of the first three minima, if wavellength of the source is \(500\;nm\) is

1 \( \pm 0.125\;cm, \pm 0.375\;cm, \pm 0.625\;cm\)
2 \( \pm 0.025\;cm, \pm 0.075\;cm, \pm 0.125\;cm\)
3 \( \pm 12.5\;cm, \pm 37.5\;cm, \pm 62.5\;cm\)
4 \( \pm 1.25\;cm, \pm 3.75\;cm, \pm 6.25\;cm\)
PHXII10:WAVE OPTICS

368087 In the young’s double slit experiment using a monochromatic light of wavelength \(\lambda \), the path difference (\(n\) is an integer) corresponding to any point having half the peak intensity is:

1 \((2n + 1)\frac{\lambda }{4}\)
2 \((2n + 1)\frac{\lambda }{2}\)
3 \((2n + 1)\frac{\lambda }{{16}}\)
4 \((2n + 1)\frac{\lambda }{8}\)
PHXII10:WAVE OPTICS

368088 If the slits in Young’s double slit experiment are of unequal width, then

1 The bright fringes will have unequal spacing
2 The bright fringes will have unequal brightness
3 The fringes do not appear
4 The dark fringes are not perfectly dark.
PHXII10:WAVE OPTICS

368085 In Young’s experiment intensity at a point on the screen is \(75\% \) of the maximum value. Minimum phase difference between the waves arriving at this point from the two slits will be

1 \({30^ \circ }\)
2 \({45^ \circ }\)
3 \({60^ \circ }\)
4 \({135^ \circ }\)
PHXII10:WAVE OPTICS

368086 In a double slit experiment, the slit seperation is \(0.20\;cm\) and the slit to screen distance is \(100\;cm\). The positions of the first three minima, if wavellength of the source is \(500\;nm\) is

1 \( \pm 0.125\;cm, \pm 0.375\;cm, \pm 0.625\;cm\)
2 \( \pm 0.025\;cm, \pm 0.075\;cm, \pm 0.125\;cm\)
3 \( \pm 12.5\;cm, \pm 37.5\;cm, \pm 62.5\;cm\)
4 \( \pm 1.25\;cm, \pm 3.75\;cm, \pm 6.25\;cm\)
PHXII10:WAVE OPTICS

368087 In the young’s double slit experiment using a monochromatic light of wavelength \(\lambda \), the path difference (\(n\) is an integer) corresponding to any point having half the peak intensity is:

1 \((2n + 1)\frac{\lambda }{4}\)
2 \((2n + 1)\frac{\lambda }{2}\)
3 \((2n + 1)\frac{\lambda }{{16}}\)
4 \((2n + 1)\frac{\lambda }{8}\)
PHXII10:WAVE OPTICS

368088 If the slits in Young’s double slit experiment are of unequal width, then

1 The bright fringes will have unequal spacing
2 The bright fringes will have unequal brightness
3 The fringes do not appear
4 The dark fringes are not perfectly dark.
PHXII10:WAVE OPTICS

368085 In Young’s experiment intensity at a point on the screen is \(75\% \) of the maximum value. Minimum phase difference between the waves arriving at this point from the two slits will be

1 \({30^ \circ }\)
2 \({45^ \circ }\)
3 \({60^ \circ }\)
4 \({135^ \circ }\)
PHXII10:WAVE OPTICS

368086 In a double slit experiment, the slit seperation is \(0.20\;cm\) and the slit to screen distance is \(100\;cm\). The positions of the first three minima, if wavellength of the source is \(500\;nm\) is

1 \( \pm 0.125\;cm, \pm 0.375\;cm, \pm 0.625\;cm\)
2 \( \pm 0.025\;cm, \pm 0.075\;cm, \pm 0.125\;cm\)
3 \( \pm 12.5\;cm, \pm 37.5\;cm, \pm 62.5\;cm\)
4 \( \pm 1.25\;cm, \pm 3.75\;cm, \pm 6.25\;cm\)
PHXII10:WAVE OPTICS

368087 In the young’s double slit experiment using a monochromatic light of wavelength \(\lambda \), the path difference (\(n\) is an integer) corresponding to any point having half the peak intensity is:

1 \((2n + 1)\frac{\lambda }{4}\)
2 \((2n + 1)\frac{\lambda }{2}\)
3 \((2n + 1)\frac{\lambda }{{16}}\)
4 \((2n + 1)\frac{\lambda }{8}\)
PHXII10:WAVE OPTICS

368088 If the slits in Young’s double slit experiment are of unequal width, then

1 The bright fringes will have unequal spacing
2 The bright fringes will have unequal brightness
3 The fringes do not appear
4 The dark fringes are not perfectly dark.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here