Dimensions
PHXI02:UNITS AND MEASUREMENTS

367259 If force \(F\), length \(L\) and time \(T\) be considered fundamental units, then units of mass will be

1 \(\left[F L T^{-2}\right]\)
2 \(\left[F L^{-2} T^{-1}\right]\)
3 \(\left[F L^{-1} T^{2}\right]\)
4 \(\left[F^{2} L T^{-2}\right]\)
PHXI02:UNITS AND MEASUREMENTS

367260 If we choose velocity \({v}\), acceleration \({a}\), and force \({F}\) as the fundamental quantities, then the angular momentum in terms of \({v, a}\), and \({F}\) would be:

1 \({\left[F a^{-1} v\right]}\)
2 \({\left[F v^{3} a^{-2}\right]}\)
3 \({\left[F v^{2} a^{-1}\right]}\)
4 \({\left[M L^{2} T^{-1}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367261 The energy \({E}\) of an oscillating body in simple harmonic motion depends on its mass \({m}\), frequency \({n}\) and amplitude \({A}\) as \({E=k(m)^{x}(n)^{y}(A)^{z}}\). The value of \({(x+y+z)}\) is

1 2
2 5
3 9
4 4
PHXI02:UNITS AND MEASUREMENTS

367262 If volume is written as, \(V=K g^{x} c^{y} h^{z}\). Here, \(K\) is dimensionless constant and \(g, c, h\) are gravitational constant, speed of light and Planck's constant, respectively. Find the value of \(\dfrac{x}{z}\).

1 3
2 1
3 2
4 5
PHXI02:UNITS AND MEASUREMENTS

367259 If force \(F\), length \(L\) and time \(T\) be considered fundamental units, then units of mass will be

1 \(\left[F L T^{-2}\right]\)
2 \(\left[F L^{-2} T^{-1}\right]\)
3 \(\left[F L^{-1} T^{2}\right]\)
4 \(\left[F^{2} L T^{-2}\right]\)
PHXI02:UNITS AND MEASUREMENTS

367260 If we choose velocity \({v}\), acceleration \({a}\), and force \({F}\) as the fundamental quantities, then the angular momentum in terms of \({v, a}\), and \({F}\) would be:

1 \({\left[F a^{-1} v\right]}\)
2 \({\left[F v^{3} a^{-2}\right]}\)
3 \({\left[F v^{2} a^{-1}\right]}\)
4 \({\left[M L^{2} T^{-1}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367261 The energy \({E}\) of an oscillating body in simple harmonic motion depends on its mass \({m}\), frequency \({n}\) and amplitude \({A}\) as \({E=k(m)^{x}(n)^{y}(A)^{z}}\). The value of \({(x+y+z)}\) is

1 2
2 5
3 9
4 4
PHXI02:UNITS AND MEASUREMENTS

367262 If volume is written as, \(V=K g^{x} c^{y} h^{z}\). Here, \(K\) is dimensionless constant and \(g, c, h\) are gravitational constant, speed of light and Planck's constant, respectively. Find the value of \(\dfrac{x}{z}\).

1 3
2 1
3 2
4 5
PHXI02:UNITS AND MEASUREMENTS

367259 If force \(F\), length \(L\) and time \(T\) be considered fundamental units, then units of mass will be

1 \(\left[F L T^{-2}\right]\)
2 \(\left[F L^{-2} T^{-1}\right]\)
3 \(\left[F L^{-1} T^{2}\right]\)
4 \(\left[F^{2} L T^{-2}\right]\)
PHXI02:UNITS AND MEASUREMENTS

367260 If we choose velocity \({v}\), acceleration \({a}\), and force \({F}\) as the fundamental quantities, then the angular momentum in terms of \({v, a}\), and \({F}\) would be:

1 \({\left[F a^{-1} v\right]}\)
2 \({\left[F v^{3} a^{-2}\right]}\)
3 \({\left[F v^{2} a^{-1}\right]}\)
4 \({\left[M L^{2} T^{-1}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367261 The energy \({E}\) of an oscillating body in simple harmonic motion depends on its mass \({m}\), frequency \({n}\) and amplitude \({A}\) as \({E=k(m)^{x}(n)^{y}(A)^{z}}\). The value of \({(x+y+z)}\) is

1 2
2 5
3 9
4 4
PHXI02:UNITS AND MEASUREMENTS

367262 If volume is written as, \(V=K g^{x} c^{y} h^{z}\). Here, \(K\) is dimensionless constant and \(g, c, h\) are gravitational constant, speed of light and Planck's constant, respectively. Find the value of \(\dfrac{x}{z}\).

1 3
2 1
3 2
4 5
PHXI02:UNITS AND MEASUREMENTS

367259 If force \(F\), length \(L\) and time \(T\) be considered fundamental units, then units of mass will be

1 \(\left[F L T^{-2}\right]\)
2 \(\left[F L^{-2} T^{-1}\right]\)
3 \(\left[F L^{-1} T^{2}\right]\)
4 \(\left[F^{2} L T^{-2}\right]\)
PHXI02:UNITS AND MEASUREMENTS

367260 If we choose velocity \({v}\), acceleration \({a}\), and force \({F}\) as the fundamental quantities, then the angular momentum in terms of \({v, a}\), and \({F}\) would be:

1 \({\left[F a^{-1} v\right]}\)
2 \({\left[F v^{3} a^{-2}\right]}\)
3 \({\left[F v^{2} a^{-1}\right]}\)
4 \({\left[M L^{2} T^{-1}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367261 The energy \({E}\) of an oscillating body in simple harmonic motion depends on its mass \({m}\), frequency \({n}\) and amplitude \({A}\) as \({E=k(m)^{x}(n)^{y}(A)^{z}}\). The value of \({(x+y+z)}\) is

1 2
2 5
3 9
4 4
PHXI02:UNITS AND MEASUREMENTS

367262 If volume is written as, \(V=K g^{x} c^{y} h^{z}\). Here, \(K\) is dimensionless constant and \(g, c, h\) are gravitational constant, speed of light and Planck's constant, respectively. Find the value of \(\dfrac{x}{z}\).

1 3
2 1
3 2
4 5