Dimensions
PHXI02:UNITS AND MEASUREMENTS

367366 Match Column I with Column II Choose the correct answer from the options given below:
Column I
Column II
A
Angular momentum
P
\(\left[ {M{L^2}{T^{ - 2}}} \right]\)
B
Torque
Q
\(\left[ {M{L^2}{T^{ - 2}}} \right]\)
C
Stress
R
\(\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]\)
D
Pressure gradient
S
\(\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]\)

1 \({\rm{A}} - {\rm{S}},\,\,\,\,{\rm{B}} - {\rm{Q}},\,\,\,{\rm{C}} - {\rm{P}},\,\,\,{\rm{D}} - {\rm{R}}\)
2 \({\rm{A}} - {\rm{Q}},\,\,\,{\rm{B}} - {\rm{R}},\,\,\,{\rm{C}} - {\rm{S}},\,\,\,{\rm{D}} - {\rm{P}}\)
3 \({\rm{A}} - {\rm{R}},\,\,\,{\rm{B}} - {\rm{P}},\,\,\,{\rm{C}} - {\rm{S}},\,\,\,{\rm{D}} - {\rm{Q}}\)
4 \({\rm{A}} - {\rm{P}},\,\,\,{\rm{B}} - {\rm{S}},\,\,\,{\rm{C}} - {\rm{R}},\,\,\,{\kern 1pt} {\rm{D}} - {\rm{Q}}\)
PHXI02:UNITS AND MEASUREMENTS

367367 Match the Column I with Column II.
Column I
Column II
A
\(Pa\,s\)
P
\([{L^2}{T^{ - 2}}{K^{ - 1}}]\)
B
\(N{\mkern 1mu} m{\mkern 1mu} K\)
Q
\([ML{T^{ - 3}}{K^{ - 1}}]\)
C
\(J\,k{g^{ - 1}}\,{K^{ - 1}}\)
R
\([M{L^{ - 1}}{T^{ - 1}}]\)
D
\(W\,{m^{ - 1}}\,{K^{ - 1}}\)
S
\([M{L^2}{T^{ - 2}}K]\)

1 A - Q, B - P, C - R, D - S
2 A - P, B - Q, C - S, D - R
3 A - R, B - S, C - P, D - Q
4 A - S, B - S, C - Q, D - P
PHXI02:UNITS AND MEASUREMENTS

367368 Dimensional formula for activity of a radioactive substance is

1 \({M^{0} L^{1} T^{-1}}\)
2 \({M^{0} L^{-1} T^{0}}\)
3 \({M^{0} L^{0} T^{-1}}\)
4 \({M^{-1} L^{0} T^{0}}\)
PHXI02:UNITS AND MEASUREMENTS

367369 Assertion :
Pressure can not be subtracted from pressure-gradient
Reason :
Pressure and pressure-gradient have different dimensions

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXI02:UNITS AND MEASUREMENTS

367366 Match Column I with Column II Choose the correct answer from the options given below:
Column I
Column II
A
Angular momentum
P
\(\left[ {M{L^2}{T^{ - 2}}} \right]\)
B
Torque
Q
\(\left[ {M{L^2}{T^{ - 2}}} \right]\)
C
Stress
R
\(\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]\)
D
Pressure gradient
S
\(\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]\)

1 \({\rm{A}} - {\rm{S}},\,\,\,\,{\rm{B}} - {\rm{Q}},\,\,\,{\rm{C}} - {\rm{P}},\,\,\,{\rm{D}} - {\rm{R}}\)
2 \({\rm{A}} - {\rm{Q}},\,\,\,{\rm{B}} - {\rm{R}},\,\,\,{\rm{C}} - {\rm{S}},\,\,\,{\rm{D}} - {\rm{P}}\)
3 \({\rm{A}} - {\rm{R}},\,\,\,{\rm{B}} - {\rm{P}},\,\,\,{\rm{C}} - {\rm{S}},\,\,\,{\rm{D}} - {\rm{Q}}\)
4 \({\rm{A}} - {\rm{P}},\,\,\,{\rm{B}} - {\rm{S}},\,\,\,{\rm{C}} - {\rm{R}},\,\,\,{\kern 1pt} {\rm{D}} - {\rm{Q}}\)
PHXI02:UNITS AND MEASUREMENTS

367367 Match the Column I with Column II.
Column I
Column II
A
\(Pa\,s\)
P
\([{L^2}{T^{ - 2}}{K^{ - 1}}]\)
B
\(N{\mkern 1mu} m{\mkern 1mu} K\)
Q
\([ML{T^{ - 3}}{K^{ - 1}}]\)
C
\(J\,k{g^{ - 1}}\,{K^{ - 1}}\)
R
\([M{L^{ - 1}}{T^{ - 1}}]\)
D
\(W\,{m^{ - 1}}\,{K^{ - 1}}\)
S
\([M{L^2}{T^{ - 2}}K]\)

1 A - Q, B - P, C - R, D - S
2 A - P, B - Q, C - S, D - R
3 A - R, B - S, C - P, D - Q
4 A - S, B - S, C - Q, D - P
PHXI02:UNITS AND MEASUREMENTS

367368 Dimensional formula for activity of a radioactive substance is

1 \({M^{0} L^{1} T^{-1}}\)
2 \({M^{0} L^{-1} T^{0}}\)
3 \({M^{0} L^{0} T^{-1}}\)
4 \({M^{-1} L^{0} T^{0}}\)
PHXI02:UNITS AND MEASUREMENTS

367369 Assertion :
Pressure can not be subtracted from pressure-gradient
Reason :
Pressure and pressure-gradient have different dimensions

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXI02:UNITS AND MEASUREMENTS

367366 Match Column I with Column II Choose the correct answer from the options given below:
Column I
Column II
A
Angular momentum
P
\(\left[ {M{L^2}{T^{ - 2}}} \right]\)
B
Torque
Q
\(\left[ {M{L^2}{T^{ - 2}}} \right]\)
C
Stress
R
\(\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]\)
D
Pressure gradient
S
\(\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]\)

1 \({\rm{A}} - {\rm{S}},\,\,\,\,{\rm{B}} - {\rm{Q}},\,\,\,{\rm{C}} - {\rm{P}},\,\,\,{\rm{D}} - {\rm{R}}\)
2 \({\rm{A}} - {\rm{Q}},\,\,\,{\rm{B}} - {\rm{R}},\,\,\,{\rm{C}} - {\rm{S}},\,\,\,{\rm{D}} - {\rm{P}}\)
3 \({\rm{A}} - {\rm{R}},\,\,\,{\rm{B}} - {\rm{P}},\,\,\,{\rm{C}} - {\rm{S}},\,\,\,{\rm{D}} - {\rm{Q}}\)
4 \({\rm{A}} - {\rm{P}},\,\,\,{\rm{B}} - {\rm{S}},\,\,\,{\rm{C}} - {\rm{R}},\,\,\,{\kern 1pt} {\rm{D}} - {\rm{Q}}\)
PHXI02:UNITS AND MEASUREMENTS

367367 Match the Column I with Column II.
Column I
Column II
A
\(Pa\,s\)
P
\([{L^2}{T^{ - 2}}{K^{ - 1}}]\)
B
\(N{\mkern 1mu} m{\mkern 1mu} K\)
Q
\([ML{T^{ - 3}}{K^{ - 1}}]\)
C
\(J\,k{g^{ - 1}}\,{K^{ - 1}}\)
R
\([M{L^{ - 1}}{T^{ - 1}}]\)
D
\(W\,{m^{ - 1}}\,{K^{ - 1}}\)
S
\([M{L^2}{T^{ - 2}}K]\)

1 A - Q, B - P, C - R, D - S
2 A - P, B - Q, C - S, D - R
3 A - R, B - S, C - P, D - Q
4 A - S, B - S, C - Q, D - P
PHXI02:UNITS AND MEASUREMENTS

367368 Dimensional formula for activity of a radioactive substance is

1 \({M^{0} L^{1} T^{-1}}\)
2 \({M^{0} L^{-1} T^{0}}\)
3 \({M^{0} L^{0} T^{-1}}\)
4 \({M^{-1} L^{0} T^{0}}\)
PHXI02:UNITS AND MEASUREMENTS

367369 Assertion :
Pressure can not be subtracted from pressure-gradient
Reason :
Pressure and pressure-gradient have different dimensions

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXI02:UNITS AND MEASUREMENTS

367366 Match Column I with Column II Choose the correct answer from the options given below:
Column I
Column II
A
Angular momentum
P
\(\left[ {M{L^2}{T^{ - 2}}} \right]\)
B
Torque
Q
\(\left[ {M{L^2}{T^{ - 2}}} \right]\)
C
Stress
R
\(\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]\)
D
Pressure gradient
S
\(\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]\)

1 \({\rm{A}} - {\rm{S}},\,\,\,\,{\rm{B}} - {\rm{Q}},\,\,\,{\rm{C}} - {\rm{P}},\,\,\,{\rm{D}} - {\rm{R}}\)
2 \({\rm{A}} - {\rm{Q}},\,\,\,{\rm{B}} - {\rm{R}},\,\,\,{\rm{C}} - {\rm{S}},\,\,\,{\rm{D}} - {\rm{P}}\)
3 \({\rm{A}} - {\rm{R}},\,\,\,{\rm{B}} - {\rm{P}},\,\,\,{\rm{C}} - {\rm{S}},\,\,\,{\rm{D}} - {\rm{Q}}\)
4 \({\rm{A}} - {\rm{P}},\,\,\,{\rm{B}} - {\rm{S}},\,\,\,{\rm{C}} - {\rm{R}},\,\,\,{\kern 1pt} {\rm{D}} - {\rm{Q}}\)
PHXI02:UNITS AND MEASUREMENTS

367367 Match the Column I with Column II.
Column I
Column II
A
\(Pa\,s\)
P
\([{L^2}{T^{ - 2}}{K^{ - 1}}]\)
B
\(N{\mkern 1mu} m{\mkern 1mu} K\)
Q
\([ML{T^{ - 3}}{K^{ - 1}}]\)
C
\(J\,k{g^{ - 1}}\,{K^{ - 1}}\)
R
\([M{L^{ - 1}}{T^{ - 1}}]\)
D
\(W\,{m^{ - 1}}\,{K^{ - 1}}\)
S
\([M{L^2}{T^{ - 2}}K]\)

1 A - Q, B - P, C - R, D - S
2 A - P, B - Q, C - S, D - R
3 A - R, B - S, C - P, D - Q
4 A - S, B - S, C - Q, D - P
PHXI02:UNITS AND MEASUREMENTS

367368 Dimensional formula for activity of a radioactive substance is

1 \({M^{0} L^{1} T^{-1}}\)
2 \({M^{0} L^{-1} T^{0}}\)
3 \({M^{0} L^{0} T^{-1}}\)
4 \({M^{-1} L^{0} T^{0}}\)
PHXI02:UNITS AND MEASUREMENTS

367369 Assertion :
Pressure can not be subtracted from pressure-gradient
Reason :
Pressure and pressure-gradient have different dimensions

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here