Dimensions
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI02:UNITS AND MEASUREMENTS

367349 If \(C\) be the capacitance and \(V\) be the electric potential, then the dimensional formula of \(C{V^2}\) is

1 \({M^1}{L^2}{T^{ - 2}}{A^0}\)
2 \({M^1}{L^1}{T^{ - 2}}{A^{ - 1}}\)
3 \({M^0}{L^1}{T^{ - 2}}{A^0}\)
4 \({M^1}{L^{ - 3}}{T^1}{A^{ - 1}}\)
PHXI02:UNITS AND MEASUREMENTS

367350 The dimensions of self or mutual inductance are given as

1 \(\left[ {{L^{ - 2}}{M^1}{T^{ - 2}}{I^{ - 2}}} \right]\)
2 \(\left[ {{L^2}{M^2}{T^{ - 2}}{I^{ - 2}}} \right]\)
3 \(\left[ {{L^2}{M^1}{T^{ - 2}}{I^{ - 2}}} \right]\)
4 \(\left[ {{L^2}{M^2}{T^{ - 2}}{I^{ - 2}}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367351 Which of the following pairs of physical quantities do not have same dimensional formula?

1 Tension and surface tension
2 Work and torque
3 Impulse and linear momentum
4 Angular momentum and Planck’s constant
PHXI02:UNITS AND MEASUREMENTS

367352 \(\left[M L^{2} T^{-3}\right]\) represents the dimensions of

1 pressure
2 energy
3 power
4 force
PHXI02:UNITS AND MEASUREMENTS

367349 If \(C\) be the capacitance and \(V\) be the electric potential, then the dimensional formula of \(C{V^2}\) is

1 \({M^1}{L^2}{T^{ - 2}}{A^0}\)
2 \({M^1}{L^1}{T^{ - 2}}{A^{ - 1}}\)
3 \({M^0}{L^1}{T^{ - 2}}{A^0}\)
4 \({M^1}{L^{ - 3}}{T^1}{A^{ - 1}}\)
PHXI02:UNITS AND MEASUREMENTS

367350 The dimensions of self or mutual inductance are given as

1 \(\left[ {{L^{ - 2}}{M^1}{T^{ - 2}}{I^{ - 2}}} \right]\)
2 \(\left[ {{L^2}{M^2}{T^{ - 2}}{I^{ - 2}}} \right]\)
3 \(\left[ {{L^2}{M^1}{T^{ - 2}}{I^{ - 2}}} \right]\)
4 \(\left[ {{L^2}{M^2}{T^{ - 2}}{I^{ - 2}}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367351 Which of the following pairs of physical quantities do not have same dimensional formula?

1 Tension and surface tension
2 Work and torque
3 Impulse and linear momentum
4 Angular momentum and Planck’s constant
PHXI02:UNITS AND MEASUREMENTS

367352 \(\left[M L^{2} T^{-3}\right]\) represents the dimensions of

1 pressure
2 energy
3 power
4 force
PHXI02:UNITS AND MEASUREMENTS

367349 If \(C\) be the capacitance and \(V\) be the electric potential, then the dimensional formula of \(C{V^2}\) is

1 \({M^1}{L^2}{T^{ - 2}}{A^0}\)
2 \({M^1}{L^1}{T^{ - 2}}{A^{ - 1}}\)
3 \({M^0}{L^1}{T^{ - 2}}{A^0}\)
4 \({M^1}{L^{ - 3}}{T^1}{A^{ - 1}}\)
PHXI02:UNITS AND MEASUREMENTS

367350 The dimensions of self or mutual inductance are given as

1 \(\left[ {{L^{ - 2}}{M^1}{T^{ - 2}}{I^{ - 2}}} \right]\)
2 \(\left[ {{L^2}{M^2}{T^{ - 2}}{I^{ - 2}}} \right]\)
3 \(\left[ {{L^2}{M^1}{T^{ - 2}}{I^{ - 2}}} \right]\)
4 \(\left[ {{L^2}{M^2}{T^{ - 2}}{I^{ - 2}}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367351 Which of the following pairs of physical quantities do not have same dimensional formula?

1 Tension and surface tension
2 Work and torque
3 Impulse and linear momentum
4 Angular momentum and Planck’s constant
PHXI02:UNITS AND MEASUREMENTS

367352 \(\left[M L^{2} T^{-3}\right]\) represents the dimensions of

1 pressure
2 energy
3 power
4 force
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI02:UNITS AND MEASUREMENTS

367349 If \(C\) be the capacitance and \(V\) be the electric potential, then the dimensional formula of \(C{V^2}\) is

1 \({M^1}{L^2}{T^{ - 2}}{A^0}\)
2 \({M^1}{L^1}{T^{ - 2}}{A^{ - 1}}\)
3 \({M^0}{L^1}{T^{ - 2}}{A^0}\)
4 \({M^1}{L^{ - 3}}{T^1}{A^{ - 1}}\)
PHXI02:UNITS AND MEASUREMENTS

367350 The dimensions of self or mutual inductance are given as

1 \(\left[ {{L^{ - 2}}{M^1}{T^{ - 2}}{I^{ - 2}}} \right]\)
2 \(\left[ {{L^2}{M^2}{T^{ - 2}}{I^{ - 2}}} \right]\)
3 \(\left[ {{L^2}{M^1}{T^{ - 2}}{I^{ - 2}}} \right]\)
4 \(\left[ {{L^2}{M^2}{T^{ - 2}}{I^{ - 2}}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367351 Which of the following pairs of physical quantities do not have same dimensional formula?

1 Tension and surface tension
2 Work and torque
3 Impulse and linear momentum
4 Angular momentum and Planck’s constant
PHXI02:UNITS AND MEASUREMENTS

367352 \(\left[M L^{2} T^{-3}\right]\) represents the dimensions of

1 pressure
2 energy
3 power
4 force