Mass Energy and Nuclear Binding Energy
PHXII13:NUCLEI

363619 The energy equivalent to a substance of mass 1\(g\) is

1 \(18 \times {10^{13}}J\)
2 \(9 \times {10^{13}}J\)
3 \(18 \times {10^6}J\)
4 \(9 \times {10^6}J\)
PHXII13:NUCLEI

363620 Let \({m_p}\) be the mass of a proton, \({m_n}\) the mass of a neturon, \({M_1}\) be the mass of \(_{10}N{e^{20}}\) nucleus Then

1 \({M_1} = 10\left( {{m_p} + {m_n}} \right)\)
2 \({M_1} > 10\left( {{m_p} + {m_n}} \right)\)
3 \({M_1} = 20{m_n}\)
4 \({M_1} < 10({m_p} + {m_n})\)
PHXII13:NUCLEI

363621 The atomic mass of \({ }_{6} C^{12}\) is \(12.000000{\rm{ }}\,\,u\) and that of \({ }_{6} C^{13}\) is \(13.003354{\rm{ }}\,\,u\). The required energy to remove a neutron from \({ }_{6} C^{13}\), if mass of neutron is \(1.008665{\rm{ }}\,\,u\), will be :

1 \(4.95\,MeV\)
2 \(6.25\,MeV\)
3 \(62.5\,MeV\)
4 \(49.5\,MeV\)
PHXII13:NUCLEI

363622 Energy equivalent to \(21\;g\) uranium is equal to:

1 \(9.0 \times {10^{13}}\;J\)
2 \(21 \times {10^{-9}}\;J\)
3 \(189 \times {10^{13}}\;J\)
4 \(1.9 \times {10^{12}}\;J\)
PHXII13:NUCLEI

363623 One microgram of matter converted into energy will be given

1 \(9 \times {10^3}J\)
2 \(90J\)
3 \(9 \times {10^5}J\)
4 \(9 \times {10^7}J\)
PHXII13:NUCLEI

363619 The energy equivalent to a substance of mass 1\(g\) is

1 \(18 \times {10^{13}}J\)
2 \(9 \times {10^{13}}J\)
3 \(18 \times {10^6}J\)
4 \(9 \times {10^6}J\)
PHXII13:NUCLEI

363620 Let \({m_p}\) be the mass of a proton, \({m_n}\) the mass of a neturon, \({M_1}\) be the mass of \(_{10}N{e^{20}}\) nucleus Then

1 \({M_1} = 10\left( {{m_p} + {m_n}} \right)\)
2 \({M_1} > 10\left( {{m_p} + {m_n}} \right)\)
3 \({M_1} = 20{m_n}\)
4 \({M_1} < 10({m_p} + {m_n})\)
PHXII13:NUCLEI

363621 The atomic mass of \({ }_{6} C^{12}\) is \(12.000000{\rm{ }}\,\,u\) and that of \({ }_{6} C^{13}\) is \(13.003354{\rm{ }}\,\,u\). The required energy to remove a neutron from \({ }_{6} C^{13}\), if mass of neutron is \(1.008665{\rm{ }}\,\,u\), will be :

1 \(4.95\,MeV\)
2 \(6.25\,MeV\)
3 \(62.5\,MeV\)
4 \(49.5\,MeV\)
PHXII13:NUCLEI

363622 Energy equivalent to \(21\;g\) uranium is equal to:

1 \(9.0 \times {10^{13}}\;J\)
2 \(21 \times {10^{-9}}\;J\)
3 \(189 \times {10^{13}}\;J\)
4 \(1.9 \times {10^{12}}\;J\)
PHXII13:NUCLEI

363623 One microgram of matter converted into energy will be given

1 \(9 \times {10^3}J\)
2 \(90J\)
3 \(9 \times {10^5}J\)
4 \(9 \times {10^7}J\)
PHXII13:NUCLEI

363619 The energy equivalent to a substance of mass 1\(g\) is

1 \(18 \times {10^{13}}J\)
2 \(9 \times {10^{13}}J\)
3 \(18 \times {10^6}J\)
4 \(9 \times {10^6}J\)
PHXII13:NUCLEI

363620 Let \({m_p}\) be the mass of a proton, \({m_n}\) the mass of a neturon, \({M_1}\) be the mass of \(_{10}N{e^{20}}\) nucleus Then

1 \({M_1} = 10\left( {{m_p} + {m_n}} \right)\)
2 \({M_1} > 10\left( {{m_p} + {m_n}} \right)\)
3 \({M_1} = 20{m_n}\)
4 \({M_1} < 10({m_p} + {m_n})\)
PHXII13:NUCLEI

363621 The atomic mass of \({ }_{6} C^{12}\) is \(12.000000{\rm{ }}\,\,u\) and that of \({ }_{6} C^{13}\) is \(13.003354{\rm{ }}\,\,u\). The required energy to remove a neutron from \({ }_{6} C^{13}\), if mass of neutron is \(1.008665{\rm{ }}\,\,u\), will be :

1 \(4.95\,MeV\)
2 \(6.25\,MeV\)
3 \(62.5\,MeV\)
4 \(49.5\,MeV\)
PHXII13:NUCLEI

363622 Energy equivalent to \(21\;g\) uranium is equal to:

1 \(9.0 \times {10^{13}}\;J\)
2 \(21 \times {10^{-9}}\;J\)
3 \(189 \times {10^{13}}\;J\)
4 \(1.9 \times {10^{12}}\;J\)
PHXII13:NUCLEI

363623 One microgram of matter converted into energy will be given

1 \(9 \times {10^3}J\)
2 \(90J\)
3 \(9 \times {10^5}J\)
4 \(9 \times {10^7}J\)
PHXII13:NUCLEI

363619 The energy equivalent to a substance of mass 1\(g\) is

1 \(18 \times {10^{13}}J\)
2 \(9 \times {10^{13}}J\)
3 \(18 \times {10^6}J\)
4 \(9 \times {10^6}J\)
PHXII13:NUCLEI

363620 Let \({m_p}\) be the mass of a proton, \({m_n}\) the mass of a neturon, \({M_1}\) be the mass of \(_{10}N{e^{20}}\) nucleus Then

1 \({M_1} = 10\left( {{m_p} + {m_n}} \right)\)
2 \({M_1} > 10\left( {{m_p} + {m_n}} \right)\)
3 \({M_1} = 20{m_n}\)
4 \({M_1} < 10({m_p} + {m_n})\)
PHXII13:NUCLEI

363621 The atomic mass of \({ }_{6} C^{12}\) is \(12.000000{\rm{ }}\,\,u\) and that of \({ }_{6} C^{13}\) is \(13.003354{\rm{ }}\,\,u\). The required energy to remove a neutron from \({ }_{6} C^{13}\), if mass of neutron is \(1.008665{\rm{ }}\,\,u\), will be :

1 \(4.95\,MeV\)
2 \(6.25\,MeV\)
3 \(62.5\,MeV\)
4 \(49.5\,MeV\)
PHXII13:NUCLEI

363622 Energy equivalent to \(21\;g\) uranium is equal to:

1 \(9.0 \times {10^{13}}\;J\)
2 \(21 \times {10^{-9}}\;J\)
3 \(189 \times {10^{13}}\;J\)
4 \(1.9 \times {10^{12}}\;J\)
PHXII13:NUCLEI

363623 One microgram of matter converted into energy will be given

1 \(9 \times {10^3}J\)
2 \(90J\)
3 \(9 \times {10^5}J\)
4 \(9 \times {10^7}J\)
PHXII13:NUCLEI

363619 The energy equivalent to a substance of mass 1\(g\) is

1 \(18 \times {10^{13}}J\)
2 \(9 \times {10^{13}}J\)
3 \(18 \times {10^6}J\)
4 \(9 \times {10^6}J\)
PHXII13:NUCLEI

363620 Let \({m_p}\) be the mass of a proton, \({m_n}\) the mass of a neturon, \({M_1}\) be the mass of \(_{10}N{e^{20}}\) nucleus Then

1 \({M_1} = 10\left( {{m_p} + {m_n}} \right)\)
2 \({M_1} > 10\left( {{m_p} + {m_n}} \right)\)
3 \({M_1} = 20{m_n}\)
4 \({M_1} < 10({m_p} + {m_n})\)
PHXII13:NUCLEI

363621 The atomic mass of \({ }_{6} C^{12}\) is \(12.000000{\rm{ }}\,\,u\) and that of \({ }_{6} C^{13}\) is \(13.003354{\rm{ }}\,\,u\). The required energy to remove a neutron from \({ }_{6} C^{13}\), if mass of neutron is \(1.008665{\rm{ }}\,\,u\), will be :

1 \(4.95\,MeV\)
2 \(6.25\,MeV\)
3 \(62.5\,MeV\)
4 \(49.5\,MeV\)
PHXII13:NUCLEI

363622 Energy equivalent to \(21\;g\) uranium is equal to:

1 \(9.0 \times {10^{13}}\;J\)
2 \(21 \times {10^{-9}}\;J\)
3 \(189 \times {10^{13}}\;J\)
4 \(1.9 \times {10^{12}}\;J\)
PHXII13:NUCLEI

363623 One microgram of matter converted into energy will be given

1 \(9 \times {10^3}J\)
2 \(90J\)
3 \(9 \times {10^5}J\)
4 \(9 \times {10^7}J\)