Analytical addition and Resolution of Vectors
PHXI04:MOTION IN A PLANE

361798 If \(\vec A = 2\hat i + 4\hat j - 5\hat k\) the direction of cosines of the vector \({\vec A}\) are

1 \(\frac{1}{{\sqrt {45} }},\,\frac{2}{{\sqrt {45} }}\,\,{\rm{and}}\,\,\frac{3}{{\sqrt {45} }}\)
2 \(\frac{2}{{\sqrt {45} }},\,\frac{4}{{\sqrt {45} }}\,\,{\rm{and}}\,\,\frac{{ - 5}}{{\sqrt {45} }}\)
3 \(\frac{3}{{\sqrt {45} }},\,\frac{2}{{\sqrt {45} }}{\rm{, }}\,{\rm{and}}\,\,\frac{5}{{\sqrt {45} }}\)
4 \(\frac{4}{{\sqrt {45} }}{\rm{,0 }}\,{\rm{and}}\,\,\frac{4}{{\sqrt {45} }}\)
PHXI04:MOTION IN A PLANE

361799 The vector projection of a vector \(3\hat i + 4\hat k\) on \(y\)-axis is

1 \(4\)
2 \(5\)
3 \({\rm{Zero}}\)
4 \(3\)
PHXI04:MOTION IN A PLANE

361798 If \(\vec A = 2\hat i + 4\hat j - 5\hat k\) the direction of cosines of the vector \({\vec A}\) are

1 \(\frac{1}{{\sqrt {45} }},\,\frac{2}{{\sqrt {45} }}\,\,{\rm{and}}\,\,\frac{3}{{\sqrt {45} }}\)
2 \(\frac{2}{{\sqrt {45} }},\,\frac{4}{{\sqrt {45} }}\,\,{\rm{and}}\,\,\frac{{ - 5}}{{\sqrt {45} }}\)
3 \(\frac{3}{{\sqrt {45} }},\,\frac{2}{{\sqrt {45} }}{\rm{, }}\,{\rm{and}}\,\,\frac{5}{{\sqrt {45} }}\)
4 \(\frac{4}{{\sqrt {45} }}{\rm{,0 }}\,{\rm{and}}\,\,\frac{4}{{\sqrt {45} }}\)
PHXI04:MOTION IN A PLANE

361799 The vector projection of a vector \(3\hat i + 4\hat k\) on \(y\)-axis is

1 \(4\)
2 \(5\)
3 \({\rm{Zero}}\)
4 \(3\)