Surface Tension
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361271 A liquid drop of diameter \(D\) breaks into 27 small drops of equal size. If the surface tension of the liquid is \(\sigma\), then change in surface energy is

1 \(\pi D^{2} \sigma\)
2 \(2 \pi D^{2} \sigma\)
3 \(3 \pi D^{2} \sigma\)
4 \(4 \pi D^{2} \sigma\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361272 A small liquid drop of radius \(R\) is divided into 27 identical liquid drops. If the surface tension is \(T\), then the work done in the process will be

1 \(3 \pi R^{2} T\)
2 \(8 \pi R^{2} T\)
3 \(4 \pi R^{2} T\)
4 \(\dfrac{1}{8} \pi R^{2} T\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361273 What is the work done in breaking a drop of water of \(4\;mm\) diameter into 1000 drops of same size, surface tension of water is \(72 \times {10^{ - 3}}N{m^{ - 1}}?\)

1 \(1.125 \times {10^{ - 4}}\;J\)
2 \(1.125 \times {10^{ - 5}}\;J\)
3 \(3.25 \times {10^{ - 5}}\;J\)
4 \(3.25 \times {10^{ - 6}}\;J\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361274 Two small drops of mercury each of radius \(r\) coalesce to form a large single drop. The ratio of the total surface energies before and after the change is

1 \(\sqrt{2}: 1\)
2 \(2^{\frac{1}{3}}: 1\)
3 \(2: 1\)
4 \(2^{\frac{2}{3}}: 1\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361275 Consider a liquid drop of radius \(R\) and density \(\rho\). Now the drop is blown into \((N)\) large number of bubbles each having radius \(R\) and surface thickness \(\dfrac{R}{1000}\). If \(T\) is the surface tension of the liquid find the work done by the external agent to blow the bubbles.
supporting img

1 \(1000\,T\pi {R^2}\)
2 \(100\,T\pi {R^2}\)
3 \(8000\,T\pi {R^2}\)
4 \(2000\,T\pi {R^2}\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361271 A liquid drop of diameter \(D\) breaks into 27 small drops of equal size. If the surface tension of the liquid is \(\sigma\), then change in surface energy is

1 \(\pi D^{2} \sigma\)
2 \(2 \pi D^{2} \sigma\)
3 \(3 \pi D^{2} \sigma\)
4 \(4 \pi D^{2} \sigma\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361272 A small liquid drop of radius \(R\) is divided into 27 identical liquid drops. If the surface tension is \(T\), then the work done in the process will be

1 \(3 \pi R^{2} T\)
2 \(8 \pi R^{2} T\)
3 \(4 \pi R^{2} T\)
4 \(\dfrac{1}{8} \pi R^{2} T\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361273 What is the work done in breaking a drop of water of \(4\;mm\) diameter into 1000 drops of same size, surface tension of water is \(72 \times {10^{ - 3}}N{m^{ - 1}}?\)

1 \(1.125 \times {10^{ - 4}}\;J\)
2 \(1.125 \times {10^{ - 5}}\;J\)
3 \(3.25 \times {10^{ - 5}}\;J\)
4 \(3.25 \times {10^{ - 6}}\;J\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361274 Two small drops of mercury each of radius \(r\) coalesce to form a large single drop. The ratio of the total surface energies before and after the change is

1 \(\sqrt{2}: 1\)
2 \(2^{\frac{1}{3}}: 1\)
3 \(2: 1\)
4 \(2^{\frac{2}{3}}: 1\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361275 Consider a liquid drop of radius \(R\) and density \(\rho\). Now the drop is blown into \((N)\) large number of bubbles each having radius \(R\) and surface thickness \(\dfrac{R}{1000}\). If \(T\) is the surface tension of the liquid find the work done by the external agent to blow the bubbles.
supporting img

1 \(1000\,T\pi {R^2}\)
2 \(100\,T\pi {R^2}\)
3 \(8000\,T\pi {R^2}\)
4 \(2000\,T\pi {R^2}\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361271 A liquid drop of diameter \(D\) breaks into 27 small drops of equal size. If the surface tension of the liquid is \(\sigma\), then change in surface energy is

1 \(\pi D^{2} \sigma\)
2 \(2 \pi D^{2} \sigma\)
3 \(3 \pi D^{2} \sigma\)
4 \(4 \pi D^{2} \sigma\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361272 A small liquid drop of radius \(R\) is divided into 27 identical liquid drops. If the surface tension is \(T\), then the work done in the process will be

1 \(3 \pi R^{2} T\)
2 \(8 \pi R^{2} T\)
3 \(4 \pi R^{2} T\)
4 \(\dfrac{1}{8} \pi R^{2} T\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361273 What is the work done in breaking a drop of water of \(4\;mm\) diameter into 1000 drops of same size, surface tension of water is \(72 \times {10^{ - 3}}N{m^{ - 1}}?\)

1 \(1.125 \times {10^{ - 4}}\;J\)
2 \(1.125 \times {10^{ - 5}}\;J\)
3 \(3.25 \times {10^{ - 5}}\;J\)
4 \(3.25 \times {10^{ - 6}}\;J\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361274 Two small drops of mercury each of radius \(r\) coalesce to form a large single drop. The ratio of the total surface energies before and after the change is

1 \(\sqrt{2}: 1\)
2 \(2^{\frac{1}{3}}: 1\)
3 \(2: 1\)
4 \(2^{\frac{2}{3}}: 1\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361275 Consider a liquid drop of radius \(R\) and density \(\rho\). Now the drop is blown into \((N)\) large number of bubbles each having radius \(R\) and surface thickness \(\dfrac{R}{1000}\). If \(T\) is the surface tension of the liquid find the work done by the external agent to blow the bubbles.
supporting img

1 \(1000\,T\pi {R^2}\)
2 \(100\,T\pi {R^2}\)
3 \(8000\,T\pi {R^2}\)
4 \(2000\,T\pi {R^2}\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361271 A liquid drop of diameter \(D\) breaks into 27 small drops of equal size. If the surface tension of the liquid is \(\sigma\), then change in surface energy is

1 \(\pi D^{2} \sigma\)
2 \(2 \pi D^{2} \sigma\)
3 \(3 \pi D^{2} \sigma\)
4 \(4 \pi D^{2} \sigma\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361272 A small liquid drop of radius \(R\) is divided into 27 identical liquid drops. If the surface tension is \(T\), then the work done in the process will be

1 \(3 \pi R^{2} T\)
2 \(8 \pi R^{2} T\)
3 \(4 \pi R^{2} T\)
4 \(\dfrac{1}{8} \pi R^{2} T\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361273 What is the work done in breaking a drop of water of \(4\;mm\) diameter into 1000 drops of same size, surface tension of water is \(72 \times {10^{ - 3}}N{m^{ - 1}}?\)

1 \(1.125 \times {10^{ - 4}}\;J\)
2 \(1.125 \times {10^{ - 5}}\;J\)
3 \(3.25 \times {10^{ - 5}}\;J\)
4 \(3.25 \times {10^{ - 6}}\;J\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361274 Two small drops of mercury each of radius \(r\) coalesce to form a large single drop. The ratio of the total surface energies before and after the change is

1 \(\sqrt{2}: 1\)
2 \(2^{\frac{1}{3}}: 1\)
3 \(2: 1\)
4 \(2^{\frac{2}{3}}: 1\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361275 Consider a liquid drop of radius \(R\) and density \(\rho\). Now the drop is blown into \((N)\) large number of bubbles each having radius \(R\) and surface thickness \(\dfrac{R}{1000}\). If \(T\) is the surface tension of the liquid find the work done by the external agent to blow the bubbles.
supporting img

1 \(1000\,T\pi {R^2}\)
2 \(100\,T\pi {R^2}\)
3 \(8000\,T\pi {R^2}\)
4 \(2000\,T\pi {R^2}\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361271 A liquid drop of diameter \(D\) breaks into 27 small drops of equal size. If the surface tension of the liquid is \(\sigma\), then change in surface energy is

1 \(\pi D^{2} \sigma\)
2 \(2 \pi D^{2} \sigma\)
3 \(3 \pi D^{2} \sigma\)
4 \(4 \pi D^{2} \sigma\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361272 A small liquid drop of radius \(R\) is divided into 27 identical liquid drops. If the surface tension is \(T\), then the work done in the process will be

1 \(3 \pi R^{2} T\)
2 \(8 \pi R^{2} T\)
3 \(4 \pi R^{2} T\)
4 \(\dfrac{1}{8} \pi R^{2} T\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361273 What is the work done in breaking a drop of water of \(4\;mm\) diameter into 1000 drops of same size, surface tension of water is \(72 \times {10^{ - 3}}N{m^{ - 1}}?\)

1 \(1.125 \times {10^{ - 4}}\;J\)
2 \(1.125 \times {10^{ - 5}}\;J\)
3 \(3.25 \times {10^{ - 5}}\;J\)
4 \(3.25 \times {10^{ - 6}}\;J\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361274 Two small drops of mercury each of radius \(r\) coalesce to form a large single drop. The ratio of the total surface energies before and after the change is

1 \(\sqrt{2}: 1\)
2 \(2^{\frac{1}{3}}: 1\)
3 \(2: 1\)
4 \(2^{\frac{2}{3}}: 1\)
PHXI10:MECHANICAL PROPERTIES OF FLUIDS

361275 Consider a liquid drop of radius \(R\) and density \(\rho\). Now the drop is blown into \((N)\) large number of bubbles each having radius \(R\) and surface thickness \(\dfrac{R}{1000}\). If \(T\) is the surface tension of the liquid find the work done by the external agent to blow the bubbles.
supporting img

1 \(1000\,T\pi {R^2}\)
2 \(100\,T\pi {R^2}\)
3 \(8000\,T\pi {R^2}\)
4 \(2000\,T\pi {R^2}\)