Explanation:
As number of moles remains constant
\(\begin{aligned}& n=n_{1}+n_{2} \\& \dfrac{P V}{R T}=\dfrac{P_{1} V_{1}}{R T}+\dfrac{P_{2} V_{2}}{R T} \\& P V=P_{1} V_{1}+P_{2} V_{2}\end{aligned}\)
\(\left( {{P_o} + \frac{{4T}}{R}} \right)\frac{4}{3}\pi {R^3} = \left( {{P_o} + \frac{{4T}}{{{R_1}}}} \right)\frac{4}{3}\pi R_1^3\)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {{P_o} + \frac{{4T}}{{{R_2}}}} \right)\frac{4}{3}\pi R_2^3\)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,{P_o}\left( {R_1^3 + R_2^3 - {R^3}} \right) = 4T\left( {{R^2} - R_1^2 - R_2^2} \right)\)