Magnetism and Gauss Law
PHXII05:MAGNETISM and MATTER

360564 Assertion :
The net magnetic flux coming out of a closed surface is always zero.
Reason :
Unlike poles of equal strength exist together.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360565 The net magnetic flux through any closed surface is:

1 Positive
2 Infinity
3 Negative
4 Zero
PHXII05:MAGNETISM and MATTER

360566 A circular loop of radius \(0.3\;cm\) lies parallel to a much bigger circular loop of radius \(20\;cm\). The centre of the smaller loop is on the axis of the bigger loop. The distance between their centres is \(15\;cm\). If a current of \(2.0\;A\) flows through the smaller loop, then the flux linked with bigger loop

1 \(9.1 \times 10^{-11}\) weber
2 \(6 \times 10^{-11}\) weber
3 \(3.3 \times 10^{-11}\) weber
4 \(6.6 \times 10^{-9}\) weber
PHXII05:MAGNETISM and MATTER

360567 A uniform magnetic field of strength \({B=2 m T}\) exists vertically downwards. These magnetic field lines pass through a closed surface as shown in the figure. The closed surface consists of a hemisphere \({S_{1}}\), a right circular cone \({S_{2}}\) and a circular surface \({S_{3}}\). The magnetic flux through \({S_{1}}\) and \({S_{2}}\) are respectively
supporting img

1 \({\phi _{{S_1}}} = - 20\,\mu Wb,{\phi _{{S_2}}} = + 20\,\mu Wb\)
2 \({\phi _{{S_1}}} = + 20\,\mu Wb,{\phi _{{S_2}}} = - 20\,\mu Wb\)
3 \({\phi _{{S_1}}} = - 40\,\mu Wb,{\phi _{{S_2}}} = + 40\,\mu Wb\)
4 \({\phi _{{S_1}}} = + 40\,\mu Wb,{\phi _{{S_2}}} = - 40\,\mu Wb\)
PHXII05:MAGNETISM and MATTER

360568 Assertion :
The magnetic flux linked with a closed surface is always zero
Reason :
Mono magnetic pole does not exist.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360564 Assertion :
The net magnetic flux coming out of a closed surface is always zero.
Reason :
Unlike poles of equal strength exist together.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360565 The net magnetic flux through any closed surface is:

1 Positive
2 Infinity
3 Negative
4 Zero
PHXII05:MAGNETISM and MATTER

360566 A circular loop of radius \(0.3\;cm\) lies parallel to a much bigger circular loop of radius \(20\;cm\). The centre of the smaller loop is on the axis of the bigger loop. The distance between their centres is \(15\;cm\). If a current of \(2.0\;A\) flows through the smaller loop, then the flux linked with bigger loop

1 \(9.1 \times 10^{-11}\) weber
2 \(6 \times 10^{-11}\) weber
3 \(3.3 \times 10^{-11}\) weber
4 \(6.6 \times 10^{-9}\) weber
PHXII05:MAGNETISM and MATTER

360567 A uniform magnetic field of strength \({B=2 m T}\) exists vertically downwards. These magnetic field lines pass through a closed surface as shown in the figure. The closed surface consists of a hemisphere \({S_{1}}\), a right circular cone \({S_{2}}\) and a circular surface \({S_{3}}\). The magnetic flux through \({S_{1}}\) and \({S_{2}}\) are respectively
supporting img

1 \({\phi _{{S_1}}} = - 20\,\mu Wb,{\phi _{{S_2}}} = + 20\,\mu Wb\)
2 \({\phi _{{S_1}}} = + 20\,\mu Wb,{\phi _{{S_2}}} = - 20\,\mu Wb\)
3 \({\phi _{{S_1}}} = - 40\,\mu Wb,{\phi _{{S_2}}} = + 40\,\mu Wb\)
4 \({\phi _{{S_1}}} = + 40\,\mu Wb,{\phi _{{S_2}}} = - 40\,\mu Wb\)
PHXII05:MAGNETISM and MATTER

360568 Assertion :
The magnetic flux linked with a closed surface is always zero
Reason :
Mono magnetic pole does not exist.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360564 Assertion :
The net magnetic flux coming out of a closed surface is always zero.
Reason :
Unlike poles of equal strength exist together.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360565 The net magnetic flux through any closed surface is:

1 Positive
2 Infinity
3 Negative
4 Zero
PHXII05:MAGNETISM and MATTER

360566 A circular loop of radius \(0.3\;cm\) lies parallel to a much bigger circular loop of radius \(20\;cm\). The centre of the smaller loop is on the axis of the bigger loop. The distance between their centres is \(15\;cm\). If a current of \(2.0\;A\) flows through the smaller loop, then the flux linked with bigger loop

1 \(9.1 \times 10^{-11}\) weber
2 \(6 \times 10^{-11}\) weber
3 \(3.3 \times 10^{-11}\) weber
4 \(6.6 \times 10^{-9}\) weber
PHXII05:MAGNETISM and MATTER

360567 A uniform magnetic field of strength \({B=2 m T}\) exists vertically downwards. These magnetic field lines pass through a closed surface as shown in the figure. The closed surface consists of a hemisphere \({S_{1}}\), a right circular cone \({S_{2}}\) and a circular surface \({S_{3}}\). The magnetic flux through \({S_{1}}\) and \({S_{2}}\) are respectively
supporting img

1 \({\phi _{{S_1}}} = - 20\,\mu Wb,{\phi _{{S_2}}} = + 20\,\mu Wb\)
2 \({\phi _{{S_1}}} = + 20\,\mu Wb,{\phi _{{S_2}}} = - 20\,\mu Wb\)
3 \({\phi _{{S_1}}} = - 40\,\mu Wb,{\phi _{{S_2}}} = + 40\,\mu Wb\)
4 \({\phi _{{S_1}}} = + 40\,\mu Wb,{\phi _{{S_2}}} = - 40\,\mu Wb\)
PHXII05:MAGNETISM and MATTER

360568 Assertion :
The magnetic flux linked with a closed surface is always zero
Reason :
Mono magnetic pole does not exist.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360564 Assertion :
The net magnetic flux coming out of a closed surface is always zero.
Reason :
Unlike poles of equal strength exist together.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360565 The net magnetic flux through any closed surface is:

1 Positive
2 Infinity
3 Negative
4 Zero
PHXII05:MAGNETISM and MATTER

360566 A circular loop of radius \(0.3\;cm\) lies parallel to a much bigger circular loop of radius \(20\;cm\). The centre of the smaller loop is on the axis of the bigger loop. The distance between their centres is \(15\;cm\). If a current of \(2.0\;A\) flows through the smaller loop, then the flux linked with bigger loop

1 \(9.1 \times 10^{-11}\) weber
2 \(6 \times 10^{-11}\) weber
3 \(3.3 \times 10^{-11}\) weber
4 \(6.6 \times 10^{-9}\) weber
PHXII05:MAGNETISM and MATTER

360567 A uniform magnetic field of strength \({B=2 m T}\) exists vertically downwards. These magnetic field lines pass through a closed surface as shown in the figure. The closed surface consists of a hemisphere \({S_{1}}\), a right circular cone \({S_{2}}\) and a circular surface \({S_{3}}\). The magnetic flux through \({S_{1}}\) and \({S_{2}}\) are respectively
supporting img

1 \({\phi _{{S_1}}} = - 20\,\mu Wb,{\phi _{{S_2}}} = + 20\,\mu Wb\)
2 \({\phi _{{S_1}}} = + 20\,\mu Wb,{\phi _{{S_2}}} = - 20\,\mu Wb\)
3 \({\phi _{{S_1}}} = - 40\,\mu Wb,{\phi _{{S_2}}} = + 40\,\mu Wb\)
4 \({\phi _{{S_1}}} = + 40\,\mu Wb,{\phi _{{S_2}}} = - 40\,\mu Wb\)
PHXII05:MAGNETISM and MATTER

360568 Assertion :
The magnetic flux linked with a closed surface is always zero
Reason :
Mono magnetic pole does not exist.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360564 Assertion :
The net magnetic flux coming out of a closed surface is always zero.
Reason :
Unlike poles of equal strength exist together.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.
PHXII05:MAGNETISM and MATTER

360565 The net magnetic flux through any closed surface is:

1 Positive
2 Infinity
3 Negative
4 Zero
PHXII05:MAGNETISM and MATTER

360566 A circular loop of radius \(0.3\;cm\) lies parallel to a much bigger circular loop of radius \(20\;cm\). The centre of the smaller loop is on the axis of the bigger loop. The distance between their centres is \(15\;cm\). If a current of \(2.0\;A\) flows through the smaller loop, then the flux linked with bigger loop

1 \(9.1 \times 10^{-11}\) weber
2 \(6 \times 10^{-11}\) weber
3 \(3.3 \times 10^{-11}\) weber
4 \(6.6 \times 10^{-9}\) weber
PHXII05:MAGNETISM and MATTER

360567 A uniform magnetic field of strength \({B=2 m T}\) exists vertically downwards. These magnetic field lines pass through a closed surface as shown in the figure. The closed surface consists of a hemisphere \({S_{1}}\), a right circular cone \({S_{2}}\) and a circular surface \({S_{3}}\). The magnetic flux through \({S_{1}}\) and \({S_{2}}\) are respectively
supporting img

1 \({\phi _{{S_1}}} = - 20\,\mu Wb,{\phi _{{S_2}}} = + 20\,\mu Wb\)
2 \({\phi _{{S_1}}} = + 20\,\mu Wb,{\phi _{{S_2}}} = - 20\,\mu Wb\)
3 \({\phi _{{S_1}}} = - 40\,\mu Wb,{\phi _{{S_2}}} = + 40\,\mu Wb\)
4 \({\phi _{{S_1}}} = + 40\,\mu Wb,{\phi _{{S_2}}} = - 40\,\mu Wb\)
PHXII05:MAGNETISM and MATTER

360568 Assertion :
The magnetic flux linked with a closed surface is always zero
Reason :
Mono magnetic pole does not exist.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but reason is correct.