Relation between Field and Potential
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359567 The electric potential at any point \(x,y,z\) in metres is given by \(V = 3{x^2}\). The electric field at a point \((2m,0,1\,m)\) is

1 \(12\,V{m^{ - 1}}\)
2 \( - 6\,V{m^{ - 1}}\)
3 \(6\,V{m^{ - 1}}\)
4 \( - 12V{m^{ - 1}}\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359568 A 5 coulomb charge experiences a constant force of \(2000\,N\) when moved between two points, separated by a distance of \(2\,cm\), in a uniform electric field. The potential difference between these two points is

1 \(8\,V\)
2 \(200\,V\)
3 \(800\,V\)
4 \(20,000\,V\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359569 The electric potential at a point in free space due to a charge \(Q\) coulomb is \(Q \times {10^{11}}V.\) The electric field at the point is

1 \(4\pi {\varepsilon _0}Q \times {10^{22}}V/m\)
2 \(12\pi {\varepsilon _0}Q \times {10^{22}}V/m\)
3 \(4\pi {\varepsilon _0}Q \times {10^{20}}V/m\)
4 \(12\pi {\varepsilon _0}Q \times {10^{20}}V/m\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359570 The electric potential at a point \(({\rm{x}},y,z)\) is given by \(V = - {{\rm{x}}^2}y - {\rm{x}}{z^3} + 4\) The electric field \(\overrightarrow E \) at that point is

1 \(\overrightarrow E = \hat i(2{\rm{x}}y + {z^3}) + \hat j{{\rm{x}}^2} + \hat k3{\rm{x}}{z^2}\)
2 \(\overrightarrow E = \hat i(2{\rm{x}}y - {z^3}) + \hat j\,{\rm{x}}{{\rm{y}}^2} + \hat k3{z^2}{\rm{x}}\)
3 \(\overrightarrow E = \hat i\,{z^3} + \hat j\,{\rm{xyz}} + \hat k{z^2}\)
4 \(\overrightarrow E = \hat i2{\rm{xy}} + \hat j\,({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}) + \hat k(3{\rm{x}}z - {y^2})\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359567 The electric potential at any point \(x,y,z\) in metres is given by \(V = 3{x^2}\). The electric field at a point \((2m,0,1\,m)\) is

1 \(12\,V{m^{ - 1}}\)
2 \( - 6\,V{m^{ - 1}}\)
3 \(6\,V{m^{ - 1}}\)
4 \( - 12V{m^{ - 1}}\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359568 A 5 coulomb charge experiences a constant force of \(2000\,N\) when moved between two points, separated by a distance of \(2\,cm\), in a uniform electric field. The potential difference between these two points is

1 \(8\,V\)
2 \(200\,V\)
3 \(800\,V\)
4 \(20,000\,V\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359569 The electric potential at a point in free space due to a charge \(Q\) coulomb is \(Q \times {10^{11}}V.\) The electric field at the point is

1 \(4\pi {\varepsilon _0}Q \times {10^{22}}V/m\)
2 \(12\pi {\varepsilon _0}Q \times {10^{22}}V/m\)
3 \(4\pi {\varepsilon _0}Q \times {10^{20}}V/m\)
4 \(12\pi {\varepsilon _0}Q \times {10^{20}}V/m\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359570 The electric potential at a point \(({\rm{x}},y,z)\) is given by \(V = - {{\rm{x}}^2}y - {\rm{x}}{z^3} + 4\) The electric field \(\overrightarrow E \) at that point is

1 \(\overrightarrow E = \hat i(2{\rm{x}}y + {z^3}) + \hat j{{\rm{x}}^2} + \hat k3{\rm{x}}{z^2}\)
2 \(\overrightarrow E = \hat i(2{\rm{x}}y - {z^3}) + \hat j\,{\rm{x}}{{\rm{y}}^2} + \hat k3{z^2}{\rm{x}}\)
3 \(\overrightarrow E = \hat i\,{z^3} + \hat j\,{\rm{xyz}} + \hat k{z^2}\)
4 \(\overrightarrow E = \hat i2{\rm{xy}} + \hat j\,({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}) + \hat k(3{\rm{x}}z - {y^2})\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359567 The electric potential at any point \(x,y,z\) in metres is given by \(V = 3{x^2}\). The electric field at a point \((2m,0,1\,m)\) is

1 \(12\,V{m^{ - 1}}\)
2 \( - 6\,V{m^{ - 1}}\)
3 \(6\,V{m^{ - 1}}\)
4 \( - 12V{m^{ - 1}}\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359568 A 5 coulomb charge experiences a constant force of \(2000\,N\) when moved between two points, separated by a distance of \(2\,cm\), in a uniform electric field. The potential difference between these two points is

1 \(8\,V\)
2 \(200\,V\)
3 \(800\,V\)
4 \(20,000\,V\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359569 The electric potential at a point in free space due to a charge \(Q\) coulomb is \(Q \times {10^{11}}V.\) The electric field at the point is

1 \(4\pi {\varepsilon _0}Q \times {10^{22}}V/m\)
2 \(12\pi {\varepsilon _0}Q \times {10^{22}}V/m\)
3 \(4\pi {\varepsilon _0}Q \times {10^{20}}V/m\)
4 \(12\pi {\varepsilon _0}Q \times {10^{20}}V/m\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359570 The electric potential at a point \(({\rm{x}},y,z)\) is given by \(V = - {{\rm{x}}^2}y - {\rm{x}}{z^3} + 4\) The electric field \(\overrightarrow E \) at that point is

1 \(\overrightarrow E = \hat i(2{\rm{x}}y + {z^3}) + \hat j{{\rm{x}}^2} + \hat k3{\rm{x}}{z^2}\)
2 \(\overrightarrow E = \hat i(2{\rm{x}}y - {z^3}) + \hat j\,{\rm{x}}{{\rm{y}}^2} + \hat k3{z^2}{\rm{x}}\)
3 \(\overrightarrow E = \hat i\,{z^3} + \hat j\,{\rm{xyz}} + \hat k{z^2}\)
4 \(\overrightarrow E = \hat i2{\rm{xy}} + \hat j\,({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}) + \hat k(3{\rm{x}}z - {y^2})\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359567 The electric potential at any point \(x,y,z\) in metres is given by \(V = 3{x^2}\). The electric field at a point \((2m,0,1\,m)\) is

1 \(12\,V{m^{ - 1}}\)
2 \( - 6\,V{m^{ - 1}}\)
3 \(6\,V{m^{ - 1}}\)
4 \( - 12V{m^{ - 1}}\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359568 A 5 coulomb charge experiences a constant force of \(2000\,N\) when moved between two points, separated by a distance of \(2\,cm\), in a uniform electric field. The potential difference between these two points is

1 \(8\,V\)
2 \(200\,V\)
3 \(800\,V\)
4 \(20,000\,V\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359569 The electric potential at a point in free space due to a charge \(Q\) coulomb is \(Q \times {10^{11}}V.\) The electric field at the point is

1 \(4\pi {\varepsilon _0}Q \times {10^{22}}V/m\)
2 \(12\pi {\varepsilon _0}Q \times {10^{22}}V/m\)
3 \(4\pi {\varepsilon _0}Q \times {10^{20}}V/m\)
4 \(12\pi {\varepsilon _0}Q \times {10^{20}}V/m\)
PHXII02:ELECTROSTATIC POTENTIAL AND CAPACITANCE

359570 The electric potential at a point \(({\rm{x}},y,z)\) is given by \(V = - {{\rm{x}}^2}y - {\rm{x}}{z^3} + 4\) The electric field \(\overrightarrow E \) at that point is

1 \(\overrightarrow E = \hat i(2{\rm{x}}y + {z^3}) + \hat j{{\rm{x}}^2} + \hat k3{\rm{x}}{z^2}\)
2 \(\overrightarrow E = \hat i(2{\rm{x}}y - {z^3}) + \hat j\,{\rm{x}}{{\rm{y}}^2} + \hat k3{z^2}{\rm{x}}\)
3 \(\overrightarrow E = \hat i\,{z^3} + \hat j\,{\rm{xyz}} + \hat k{z^2}\)
4 \(\overrightarrow E = \hat i2{\rm{xy}} + \hat j\,({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}) + \hat k(3{\rm{x}}z - {y^2})\)