366242
The angle between vectors \((\vec A \times \vec B)\) and \((\vec B \times \vec A)\) is
1 Zero
2 \(\pi \)
3 \(\pi /4\)
4 \(\pi /2\)
Explanation:
\(\vec A \times \vec B\) and \(\vec B \times \vec A\) are anti parallel to each other. So the angle will be \(\pi \).
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
366243
If \(A = 5\) units, \(B = 6\) units and \(\left| {\vec A \times \vec B} \right| = 15\) units, then what is the angle between \({\vec A}\) and \({\vec B}\) ?
366244
Three vectors \(\vec A,\vec B\) and \({\vec C}\) atisfy the relation \(\vec A \cdot \vec B = 0\) and \(\vec A \cdot \vec C = 0.\) The vector \({\vec A}\) is parallel to
1 \({\vec B}\)
2 \({\vec C}\)
3 \(\vec B \times \vec C\)
4 \(\vec B + \vec C\)
Explanation:
If \(\vec A \cdot \vec B = 0,\vec A\) is perpendicular to \(\vec B.\) If \(\vec A \cdot \vec C = 0,\vec A\)is perpendicular to \(\vec C.\) So \({\vec A}\) is perpendicular to both \(\vec B\,\,and\,\,\vec C.\) Also \(\vec B \times \vec C\) is perpendicular to both \(\vec B\,\,and\,\,\vec C.\) Hence \({\vec A}\) is parallel to \(\vec B \times \vec C.\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
366245
If \(\vec A \times \vec B = \vec B \times \vec A,\) then the angle between \({\vec A}\) and \(\overrightarrow B \) is
366242
The angle between vectors \((\vec A \times \vec B)\) and \((\vec B \times \vec A)\) is
1 Zero
2 \(\pi \)
3 \(\pi /4\)
4 \(\pi /2\)
Explanation:
\(\vec A \times \vec B\) and \(\vec B \times \vec A\) are anti parallel to each other. So the angle will be \(\pi \).
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
366243
If \(A = 5\) units, \(B = 6\) units and \(\left| {\vec A \times \vec B} \right| = 15\) units, then what is the angle between \({\vec A}\) and \({\vec B}\) ?
366244
Three vectors \(\vec A,\vec B\) and \({\vec C}\) atisfy the relation \(\vec A \cdot \vec B = 0\) and \(\vec A \cdot \vec C = 0.\) The vector \({\vec A}\) is parallel to
1 \({\vec B}\)
2 \({\vec C}\)
3 \(\vec B \times \vec C\)
4 \(\vec B + \vec C\)
Explanation:
If \(\vec A \cdot \vec B = 0,\vec A\) is perpendicular to \(\vec B.\) If \(\vec A \cdot \vec C = 0,\vec A\)is perpendicular to \(\vec C.\) So \({\vec A}\) is perpendicular to both \(\vec B\,\,and\,\,\vec C.\) Also \(\vec B \times \vec C\) is perpendicular to both \(\vec B\,\,and\,\,\vec C.\) Hence \({\vec A}\) is parallel to \(\vec B \times \vec C.\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
366245
If \(\vec A \times \vec B = \vec B \times \vec A,\) then the angle between \({\vec A}\) and \(\overrightarrow B \) is
366242
The angle between vectors \((\vec A \times \vec B)\) and \((\vec B \times \vec A)\) is
1 Zero
2 \(\pi \)
3 \(\pi /4\)
4 \(\pi /2\)
Explanation:
\(\vec A \times \vec B\) and \(\vec B \times \vec A\) are anti parallel to each other. So the angle will be \(\pi \).
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
366243
If \(A = 5\) units, \(B = 6\) units and \(\left| {\vec A \times \vec B} \right| = 15\) units, then what is the angle between \({\vec A}\) and \({\vec B}\) ?
366244
Three vectors \(\vec A,\vec B\) and \({\vec C}\) atisfy the relation \(\vec A \cdot \vec B = 0\) and \(\vec A \cdot \vec C = 0.\) The vector \({\vec A}\) is parallel to
1 \({\vec B}\)
2 \({\vec C}\)
3 \(\vec B \times \vec C\)
4 \(\vec B + \vec C\)
Explanation:
If \(\vec A \cdot \vec B = 0,\vec A\) is perpendicular to \(\vec B.\) If \(\vec A \cdot \vec C = 0,\vec A\)is perpendicular to \(\vec C.\) So \({\vec A}\) is perpendicular to both \(\vec B\,\,and\,\,\vec C.\) Also \(\vec B \times \vec C\) is perpendicular to both \(\vec B\,\,and\,\,\vec C.\) Hence \({\vec A}\) is parallel to \(\vec B \times \vec C.\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
366245
If \(\vec A \times \vec B = \vec B \times \vec A,\) then the angle between \({\vec A}\) and \(\overrightarrow B \) is
366242
The angle between vectors \((\vec A \times \vec B)\) and \((\vec B \times \vec A)\) is
1 Zero
2 \(\pi \)
3 \(\pi /4\)
4 \(\pi /2\)
Explanation:
\(\vec A \times \vec B\) and \(\vec B \times \vec A\) are anti parallel to each other. So the angle will be \(\pi \).
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
366243
If \(A = 5\) units, \(B = 6\) units and \(\left| {\vec A \times \vec B} \right| = 15\) units, then what is the angle between \({\vec A}\) and \({\vec B}\) ?
366244
Three vectors \(\vec A,\vec B\) and \({\vec C}\) atisfy the relation \(\vec A \cdot \vec B = 0\) and \(\vec A \cdot \vec C = 0.\) The vector \({\vec A}\) is parallel to
1 \({\vec B}\)
2 \({\vec C}\)
3 \(\vec B \times \vec C\)
4 \(\vec B + \vec C\)
Explanation:
If \(\vec A \cdot \vec B = 0,\vec A\) is perpendicular to \(\vec B.\) If \(\vec A \cdot \vec C = 0,\vec A\)is perpendicular to \(\vec C.\) So \({\vec A}\) is perpendicular to both \(\vec B\,\,and\,\,\vec C.\) Also \(\vec B \times \vec C\) is perpendicular to both \(\vec B\,\,and\,\,\vec C.\) Hence \({\vec A}\) is parallel to \(\vec B \times \vec C.\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
366245
If \(\vec A \times \vec B = \vec B \times \vec A,\) then the angle between \({\vec A}\) and \(\overrightarrow B \) is