Vector Product of Two Vectors
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366242 The angle between vectors \((\vec A \times \vec B)\) and \((\vec B \times \vec A)\) is

1 Zero
2 \(\pi \)
3 \(\pi /4\)
4 \(\pi /2\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366243 If \(A = 5\) units, \(B = 6\) units and \(\left| {\vec A \times \vec B} \right| = 15\) units, then what is the angle between \({\vec A}\) and \({\vec B}\) ?

1 \(30^\circ \)
2 \(60^\circ \)
3 \(90^\circ \)
4 \(120^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366244 Three vectors \(\vec A,\vec B\) and \({\vec C}\) atisfy the relation \(\vec A \cdot \vec B = 0\) and \(\vec A \cdot \vec C = 0.\) The vector \({\vec A}\) is parallel to

1 \({\vec B}\)
2 \({\vec C}\)
3 \(\vec B \times \vec C\)
4 \(\vec B + \vec C\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366245 If \(\vec A \times \vec B = \vec B \times \vec A,\) then the angle between \({\vec A}\) and \(\overrightarrow B \) is

1 \(\pi /2\)
2 \(\pi /3\)
3 \(\pi \)
4 \(\pi /4\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366242 The angle between vectors \((\vec A \times \vec B)\) and \((\vec B \times \vec A)\) is

1 Zero
2 \(\pi \)
3 \(\pi /4\)
4 \(\pi /2\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366243 If \(A = 5\) units, \(B = 6\) units and \(\left| {\vec A \times \vec B} \right| = 15\) units, then what is the angle between \({\vec A}\) and \({\vec B}\) ?

1 \(30^\circ \)
2 \(60^\circ \)
3 \(90^\circ \)
4 \(120^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366244 Three vectors \(\vec A,\vec B\) and \({\vec C}\) atisfy the relation \(\vec A \cdot \vec B = 0\) and \(\vec A \cdot \vec C = 0.\) The vector \({\vec A}\) is parallel to

1 \({\vec B}\)
2 \({\vec C}\)
3 \(\vec B \times \vec C\)
4 \(\vec B + \vec C\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366245 If \(\vec A \times \vec B = \vec B \times \vec A,\) then the angle between \({\vec A}\) and \(\overrightarrow B \) is

1 \(\pi /2\)
2 \(\pi /3\)
3 \(\pi \)
4 \(\pi /4\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366242 The angle between vectors \((\vec A \times \vec B)\) and \((\vec B \times \vec A)\) is

1 Zero
2 \(\pi \)
3 \(\pi /4\)
4 \(\pi /2\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366243 If \(A = 5\) units, \(B = 6\) units and \(\left| {\vec A \times \vec B} \right| = 15\) units, then what is the angle between \({\vec A}\) and \({\vec B}\) ?

1 \(30^\circ \)
2 \(60^\circ \)
3 \(90^\circ \)
4 \(120^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366244 Three vectors \(\vec A,\vec B\) and \({\vec C}\) atisfy the relation \(\vec A \cdot \vec B = 0\) and \(\vec A \cdot \vec C = 0.\) The vector \({\vec A}\) is parallel to

1 \({\vec B}\)
2 \({\vec C}\)
3 \(\vec B \times \vec C\)
4 \(\vec B + \vec C\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366245 If \(\vec A \times \vec B = \vec B \times \vec A,\) then the angle between \({\vec A}\) and \(\overrightarrow B \) is

1 \(\pi /2\)
2 \(\pi /3\)
3 \(\pi \)
4 \(\pi /4\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366242 The angle between vectors \((\vec A \times \vec B)\) and \((\vec B \times \vec A)\) is

1 Zero
2 \(\pi \)
3 \(\pi /4\)
4 \(\pi /2\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366243 If \(A = 5\) units, \(B = 6\) units and \(\left| {\vec A \times \vec B} \right| = 15\) units, then what is the angle between \({\vec A}\) and \({\vec B}\) ?

1 \(30^\circ \)
2 \(60^\circ \)
3 \(90^\circ \)
4 \(120^\circ \)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366244 Three vectors \(\vec A,\vec B\) and \({\vec C}\) atisfy the relation \(\vec A \cdot \vec B = 0\) and \(\vec A \cdot \vec C = 0.\) The vector \({\vec A}\) is parallel to

1 \({\vec B}\)
2 \({\vec C}\)
3 \(\vec B \times \vec C\)
4 \(\vec B + \vec C\)
PHXI07:SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

366245 If \(\vec A \times \vec B = \vec B \times \vec A,\) then the angle between \({\vec A}\) and \(\overrightarrow B \) is

1 \(\pi /2\)
2 \(\pi /3\)
3 \(\pi \)
4 \(\pi /4\)