1 \(\dfrac{M R \omega}{4 t}\)
2 \(\dfrac{M R \omega}{2 t}\)
3 \(\dfrac{M R \omega}{t}\)
4 \(M R \omega t\)
Explanation:
If \(\alpha\) and I are the angular acceleration and moment of inertia of the disk respectively, then torque applied to the disk,
\(\tau = I\alpha \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)
But \(\tau=F \times R, I=\dfrac{M R^{2}}{2}\) and $\alpha=\dfrac{\omega}{t}
\(Therefore, \) F \times R=\dfrac{M R^{2}}{2} \times \dfrac{\omega}{t}$
\(\Rightarrow F=\dfrac{M R \omega}{2 t}\)