Werner’s Theory of Coordination Compounds
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII09:COORDINATION COMPOUNDS

322363 A \(1 \mathrm{~L}, 0.02 \mathrm{M}\) solution of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}\) is mixed with \(1 \mathrm{~L}, 0.02 \mathrm{M}\) solution of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}\). The resulting solution is divided into two equal parts \((\mathrm{X})\) and treated with excess of \(\mathrm{AgNO}_{3}\) solution and \(\mathrm{BaCl}_{2}\) solution, respectively as shown below:
1L Solution ( X\()+\mathrm{AgNO}_{3}\) solution (excess)
\( \to {\rm{Y}}\)
1L Solution ( X\()+\mathrm{BaCl}_{2}\) solution (excess)
\(\longrightarrow\) Z
The number of moles of Y and Z , respectively are

1 \(0.02,0.02\)
2 \(0.02,0.01\)
3 \(0.01,0.01\)
4 \(0.01,0.02\)
CHXII09:COORDINATION COMPOUNDS

322364 Palladium(II) tends to form complexes with a coordination number of 4 . One such compound was originally formulated as \({\mathrm{\mathrm{PdCl}_{2} \cdot 3 \mathrm{NH}_{3}}}\). Suppose an aqueous solution of the compound is treated with excess \({\mathrm{\mathrm{AgNO}_{3(\mathrm{aq})}}}\), how many moles of \({\mathrm{\mathrm{AgCl}_{(\mathrm{s})}}}\) are formed per mole of \({\mathrm{\mathrm{PdCl}_{2} \cdot 3 \mathrm{NH}_{3}}}\) ?

1 1
2 4
3 3
4 1
CHXII09:COORDINATION COMPOUNDS

322365 Aqueous solution of \(\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}\) upon addition with \(\mathrm{AgNO}_{3}\) produces 3 moles white precipitate. Primary and secondary valency of metal in this complex is

1 6,4
2 3,3
3 2,6
4 3,6
CHXII09:COORDINATION COMPOUNDS

322366 Match the column I with column II and choose the correct option.
Column I
Column II
A
\(\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}\)
P
Violet
B
\(\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}\)
Q
Green
C
\(\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}\)
R
Purple
D
\(\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}\)
S
Yellow

1 \({\text{A - P, B - Q, C - R, D - S}}\)
2 \({\text{A - Q, B - P, C - S, D - R}}\)
3 \({\text{A - R, B - P, C - S, D - Q}}\)
4 \({\text{A - S, B - R, C - Q, D - P}}\)
CHXII09:COORDINATION COMPOUNDS

322363 A \(1 \mathrm{~L}, 0.02 \mathrm{M}\) solution of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}\) is mixed with \(1 \mathrm{~L}, 0.02 \mathrm{M}\) solution of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}\). The resulting solution is divided into two equal parts \((\mathrm{X})\) and treated with excess of \(\mathrm{AgNO}_{3}\) solution and \(\mathrm{BaCl}_{2}\) solution, respectively as shown below:
1L Solution ( X\()+\mathrm{AgNO}_{3}\) solution (excess)
\( \to {\rm{Y}}\)
1L Solution ( X\()+\mathrm{BaCl}_{2}\) solution (excess)
\(\longrightarrow\) Z
The number of moles of Y and Z , respectively are

1 \(0.02,0.02\)
2 \(0.02,0.01\)
3 \(0.01,0.01\)
4 \(0.01,0.02\)
CHXII09:COORDINATION COMPOUNDS

322364 Palladium(II) tends to form complexes with a coordination number of 4 . One such compound was originally formulated as \({\mathrm{\mathrm{PdCl}_{2} \cdot 3 \mathrm{NH}_{3}}}\). Suppose an aqueous solution of the compound is treated with excess \({\mathrm{\mathrm{AgNO}_{3(\mathrm{aq})}}}\), how many moles of \({\mathrm{\mathrm{AgCl}_{(\mathrm{s})}}}\) are formed per mole of \({\mathrm{\mathrm{PdCl}_{2} \cdot 3 \mathrm{NH}_{3}}}\) ?

1 1
2 4
3 3
4 1
CHXII09:COORDINATION COMPOUNDS

322365 Aqueous solution of \(\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}\) upon addition with \(\mathrm{AgNO}_{3}\) produces 3 moles white precipitate. Primary and secondary valency of metal in this complex is

1 6,4
2 3,3
3 2,6
4 3,6
CHXII09:COORDINATION COMPOUNDS

322366 Match the column I with column II and choose the correct option.
Column I
Column II
A
\(\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}\)
P
Violet
B
\(\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}\)
Q
Green
C
\(\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}\)
R
Purple
D
\(\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}\)
S
Yellow

1 \({\text{A - P, B - Q, C - R, D - S}}\)
2 \({\text{A - Q, B - P, C - S, D - R}}\)
3 \({\text{A - R, B - P, C - S, D - Q}}\)
4 \({\text{A - S, B - R, C - Q, D - P}}\)
CHXII09:COORDINATION COMPOUNDS

322363 A \(1 \mathrm{~L}, 0.02 \mathrm{M}\) solution of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}\) is mixed with \(1 \mathrm{~L}, 0.02 \mathrm{M}\) solution of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}\). The resulting solution is divided into two equal parts \((\mathrm{X})\) and treated with excess of \(\mathrm{AgNO}_{3}\) solution and \(\mathrm{BaCl}_{2}\) solution, respectively as shown below:
1L Solution ( X\()+\mathrm{AgNO}_{3}\) solution (excess)
\( \to {\rm{Y}}\)
1L Solution ( X\()+\mathrm{BaCl}_{2}\) solution (excess)
\(\longrightarrow\) Z
The number of moles of Y and Z , respectively are

1 \(0.02,0.02\)
2 \(0.02,0.01\)
3 \(0.01,0.01\)
4 \(0.01,0.02\)
CHXII09:COORDINATION COMPOUNDS

322364 Palladium(II) tends to form complexes with a coordination number of 4 . One such compound was originally formulated as \({\mathrm{\mathrm{PdCl}_{2} \cdot 3 \mathrm{NH}_{3}}}\). Suppose an aqueous solution of the compound is treated with excess \({\mathrm{\mathrm{AgNO}_{3(\mathrm{aq})}}}\), how many moles of \({\mathrm{\mathrm{AgCl}_{(\mathrm{s})}}}\) are formed per mole of \({\mathrm{\mathrm{PdCl}_{2} \cdot 3 \mathrm{NH}_{3}}}\) ?

1 1
2 4
3 3
4 1
CHXII09:COORDINATION COMPOUNDS

322365 Aqueous solution of \(\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}\) upon addition with \(\mathrm{AgNO}_{3}\) produces 3 moles white precipitate. Primary and secondary valency of metal in this complex is

1 6,4
2 3,3
3 2,6
4 3,6
CHXII09:COORDINATION COMPOUNDS

322366 Match the column I with column II and choose the correct option.
Column I
Column II
A
\(\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}\)
P
Violet
B
\(\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}\)
Q
Green
C
\(\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}\)
R
Purple
D
\(\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}\)
S
Yellow

1 \({\text{A - P, B - Q, C - R, D - S}}\)
2 \({\text{A - Q, B - P, C - S, D - R}}\)
3 \({\text{A - R, B - P, C - S, D - Q}}\)
4 \({\text{A - S, B - R, C - Q, D - P}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII09:COORDINATION COMPOUNDS

322363 A \(1 \mathrm{~L}, 0.02 \mathrm{M}\) solution of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}\) is mixed with \(1 \mathrm{~L}, 0.02 \mathrm{M}\) solution of \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}\). The resulting solution is divided into two equal parts \((\mathrm{X})\) and treated with excess of \(\mathrm{AgNO}_{3}\) solution and \(\mathrm{BaCl}_{2}\) solution, respectively as shown below:
1L Solution ( X\()+\mathrm{AgNO}_{3}\) solution (excess)
\( \to {\rm{Y}}\)
1L Solution ( X\()+\mathrm{BaCl}_{2}\) solution (excess)
\(\longrightarrow\) Z
The number of moles of Y and Z , respectively are

1 \(0.02,0.02\)
2 \(0.02,0.01\)
3 \(0.01,0.01\)
4 \(0.01,0.02\)
CHXII09:COORDINATION COMPOUNDS

322364 Palladium(II) tends to form complexes with a coordination number of 4 . One such compound was originally formulated as \({\mathrm{\mathrm{PdCl}_{2} \cdot 3 \mathrm{NH}_{3}}}\). Suppose an aqueous solution of the compound is treated with excess \({\mathrm{\mathrm{AgNO}_{3(\mathrm{aq})}}}\), how many moles of \({\mathrm{\mathrm{AgCl}_{(\mathrm{s})}}}\) are formed per mole of \({\mathrm{\mathrm{PdCl}_{2} \cdot 3 \mathrm{NH}_{3}}}\) ?

1 1
2 4
3 3
4 1
CHXII09:COORDINATION COMPOUNDS

322365 Aqueous solution of \(\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}\) upon addition with \(\mathrm{AgNO}_{3}\) produces 3 moles white precipitate. Primary and secondary valency of metal in this complex is

1 6,4
2 3,3
3 2,6
4 3,6
CHXII09:COORDINATION COMPOUNDS

322366 Match the column I with column II and choose the correct option.
Column I
Column II
A
\(\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}\)
P
Violet
B
\(\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}\)
Q
Green
C
\(\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}\)
R
Purple
D
\(\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}\)
S
Yellow

1 \({\text{A - P, B - Q, C - R, D - S}}\)
2 \({\text{A - Q, B - P, C - S, D - R}}\)
3 \({\text{A - R, B - P, C - S, D - Q}}\)
4 \({\text{A - S, B - R, C - Q, D - P}}\)