Rate of the Reaction
CHXII04:CHEMICAL KINETICS

320603 For the reaction,
\({{\rm{N}}_{\rm{2}}}{\rm{(g) + 3}}{{\rm{H}}_{\rm{2}}}{\rm{(g)}} \to {\rm{2N}}{{\rm{H}}_{\rm{3}}}{\rm{(g)}}\). under certain conditions of temperature and partial pressure of the reactants, the rate of formation of \({\rm{N}}{{\rm{H}}_{\rm{3}}}\,\,{\rm{is}}\,\,{\rm{0}}{\rm{.001kg}}{{\rm{h}}^{{\rm{ - 1}}}}\). The rate of conversion of \({{\rm{H}}_{\rm{2}}}\) under the same condition is:

1 \(1.82 \times 10^{-4} \mathrm{~kg} / \mathrm{h}\)
2 \(0.84 \times 10^{-3} \mathrm{~kg} / \mathrm{h}\)
3 \(1.52 \times 10^{4} \mathrm{~kg} / \mathrm{h}\)
4 \(1.82 \times 10^{-14} \mathrm{~kg} / \mathrm{h}\)
CHXII04:CHEMICAL KINETICS

320604 For a hypothetical reaction, \({\rm{A + 3B}} \to {\rm{P}}\quad {\rm{\Delta H = - 2x\;kJ/}}\) mole of A & \({\rm{M}} \to {\rm{2Q + R}}\quad {\rm{\Delta H = + x\;kJ/}}\) mole of M If these reactions are carried simultaneously in a reactor such that temperature is not changing. If rate of disappearance of B is \({\rm{y}}\,\,{\rm{M}}\,\,{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) then rate of formation (in \({\rm{Mse}}{{\rm{c}}^{{\rm{ - 1}}}}\) ) of \(\mathrm{Q}\) is:

1 \(\frac{{\rm{2}}}{{\rm{3}}}{\rm{y}}\)
2 \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{y}}\)
3 \(\frac{{\rm{4}}}{{\rm{3}}}{\rm{y}}\)
4 \(\frac{{\rm{3}}}{{\rm{4}}}{\rm{y}}\)
CHXII04:CHEMICAL KINETICS

320605 For the reaction \(4 \mathrm{P}+\mathrm{Q} \rightarrow 2 \mathrm{R}+2 \mathrm{~S}\). Which of the following statement(s) is/are true ?
I. Rate of appearrance of \(\mathrm{S}\) is double the rate of the disappearance of \(\mathrm{Q}\).
II. Rate of disappearance \(\mathrm{Q}\) is one fourth the rate of disappearance of \(P\)
III. Rate of formation of \(\mathrm{R}\) is equal to the rate of formation of \(\mathrm{S}\).
Choose the correct option.

1 I and II
2 II and III
3 I and III
4 I, II and III
CHXII04:CHEMICAL KINETICS

320606 Contact process is used in the formation of sulphur trioxide, \({\text{2S}}{{\text{O}}_{{\text{2(}}\;{\text{g)}}}}{\text{ + }}{{\text{O}}_{{\text{2(}}\;{\text{g)}}}} \rightleftharpoons {\text{2S}}{{\text{O}}_{{\text{3(}}\;{\text{g)}}}}\)
The rate of reaction can be expressed as

\(\frac{{{\rm{ - \Delta }}\left[ {{{\rm{O}}_{\rm{2}}}} \right]}}{{{\rm{\Delta t}}}}{\rm{ = 2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{\;mol\;}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\).

Then rate of disappearance of \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) will be

1 \(50.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
2 \(3.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
3 \(2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
4 \(4.12 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
CHXII04:CHEMICAL KINETICS

320603 For the reaction,
\({{\rm{N}}_{\rm{2}}}{\rm{(g) + 3}}{{\rm{H}}_{\rm{2}}}{\rm{(g)}} \to {\rm{2N}}{{\rm{H}}_{\rm{3}}}{\rm{(g)}}\). under certain conditions of temperature and partial pressure of the reactants, the rate of formation of \({\rm{N}}{{\rm{H}}_{\rm{3}}}\,\,{\rm{is}}\,\,{\rm{0}}{\rm{.001kg}}{{\rm{h}}^{{\rm{ - 1}}}}\). The rate of conversion of \({{\rm{H}}_{\rm{2}}}\) under the same condition is:

1 \(1.82 \times 10^{-4} \mathrm{~kg} / \mathrm{h}\)
2 \(0.84 \times 10^{-3} \mathrm{~kg} / \mathrm{h}\)
3 \(1.52 \times 10^{4} \mathrm{~kg} / \mathrm{h}\)
4 \(1.82 \times 10^{-14} \mathrm{~kg} / \mathrm{h}\)
CHXII04:CHEMICAL KINETICS

320604 For a hypothetical reaction, \({\rm{A + 3B}} \to {\rm{P}}\quad {\rm{\Delta H = - 2x\;kJ/}}\) mole of A & \({\rm{M}} \to {\rm{2Q + R}}\quad {\rm{\Delta H = + x\;kJ/}}\) mole of M If these reactions are carried simultaneously in a reactor such that temperature is not changing. If rate of disappearance of B is \({\rm{y}}\,\,{\rm{M}}\,\,{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) then rate of formation (in \({\rm{Mse}}{{\rm{c}}^{{\rm{ - 1}}}}\) ) of \(\mathrm{Q}\) is:

1 \(\frac{{\rm{2}}}{{\rm{3}}}{\rm{y}}\)
2 \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{y}}\)
3 \(\frac{{\rm{4}}}{{\rm{3}}}{\rm{y}}\)
4 \(\frac{{\rm{3}}}{{\rm{4}}}{\rm{y}}\)
CHXII04:CHEMICAL KINETICS

320605 For the reaction \(4 \mathrm{P}+\mathrm{Q} \rightarrow 2 \mathrm{R}+2 \mathrm{~S}\). Which of the following statement(s) is/are true ?
I. Rate of appearrance of \(\mathrm{S}\) is double the rate of the disappearance of \(\mathrm{Q}\).
II. Rate of disappearance \(\mathrm{Q}\) is one fourth the rate of disappearance of \(P\)
III. Rate of formation of \(\mathrm{R}\) is equal to the rate of formation of \(\mathrm{S}\).
Choose the correct option.

1 I and II
2 II and III
3 I and III
4 I, II and III
CHXII04:CHEMICAL KINETICS

320606 Contact process is used in the formation of sulphur trioxide, \({\text{2S}}{{\text{O}}_{{\text{2(}}\;{\text{g)}}}}{\text{ + }}{{\text{O}}_{{\text{2(}}\;{\text{g)}}}} \rightleftharpoons {\text{2S}}{{\text{O}}_{{\text{3(}}\;{\text{g)}}}}\)
The rate of reaction can be expressed as

\(\frac{{{\rm{ - \Delta }}\left[ {{{\rm{O}}_{\rm{2}}}} \right]}}{{{\rm{\Delta t}}}}{\rm{ = 2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{\;mol\;}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\).

Then rate of disappearance of \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) will be

1 \(50.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
2 \(3.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
3 \(2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
4 \(4.12 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
CHXII04:CHEMICAL KINETICS

320603 For the reaction,
\({{\rm{N}}_{\rm{2}}}{\rm{(g) + 3}}{{\rm{H}}_{\rm{2}}}{\rm{(g)}} \to {\rm{2N}}{{\rm{H}}_{\rm{3}}}{\rm{(g)}}\). under certain conditions of temperature and partial pressure of the reactants, the rate of formation of \({\rm{N}}{{\rm{H}}_{\rm{3}}}\,\,{\rm{is}}\,\,{\rm{0}}{\rm{.001kg}}{{\rm{h}}^{{\rm{ - 1}}}}\). The rate of conversion of \({{\rm{H}}_{\rm{2}}}\) under the same condition is:

1 \(1.82 \times 10^{-4} \mathrm{~kg} / \mathrm{h}\)
2 \(0.84 \times 10^{-3} \mathrm{~kg} / \mathrm{h}\)
3 \(1.52 \times 10^{4} \mathrm{~kg} / \mathrm{h}\)
4 \(1.82 \times 10^{-14} \mathrm{~kg} / \mathrm{h}\)
CHXII04:CHEMICAL KINETICS

320604 For a hypothetical reaction, \({\rm{A + 3B}} \to {\rm{P}}\quad {\rm{\Delta H = - 2x\;kJ/}}\) mole of A & \({\rm{M}} \to {\rm{2Q + R}}\quad {\rm{\Delta H = + x\;kJ/}}\) mole of M If these reactions are carried simultaneously in a reactor such that temperature is not changing. If rate of disappearance of B is \({\rm{y}}\,\,{\rm{M}}\,\,{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) then rate of formation (in \({\rm{Mse}}{{\rm{c}}^{{\rm{ - 1}}}}\) ) of \(\mathrm{Q}\) is:

1 \(\frac{{\rm{2}}}{{\rm{3}}}{\rm{y}}\)
2 \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{y}}\)
3 \(\frac{{\rm{4}}}{{\rm{3}}}{\rm{y}}\)
4 \(\frac{{\rm{3}}}{{\rm{4}}}{\rm{y}}\)
CHXII04:CHEMICAL KINETICS

320605 For the reaction \(4 \mathrm{P}+\mathrm{Q} \rightarrow 2 \mathrm{R}+2 \mathrm{~S}\). Which of the following statement(s) is/are true ?
I. Rate of appearrance of \(\mathrm{S}\) is double the rate of the disappearance of \(\mathrm{Q}\).
II. Rate of disappearance \(\mathrm{Q}\) is one fourth the rate of disappearance of \(P\)
III. Rate of formation of \(\mathrm{R}\) is equal to the rate of formation of \(\mathrm{S}\).
Choose the correct option.

1 I and II
2 II and III
3 I and III
4 I, II and III
CHXII04:CHEMICAL KINETICS

320606 Contact process is used in the formation of sulphur trioxide, \({\text{2S}}{{\text{O}}_{{\text{2(}}\;{\text{g)}}}}{\text{ + }}{{\text{O}}_{{\text{2(}}\;{\text{g)}}}} \rightleftharpoons {\text{2S}}{{\text{O}}_{{\text{3(}}\;{\text{g)}}}}\)
The rate of reaction can be expressed as

\(\frac{{{\rm{ - \Delta }}\left[ {{{\rm{O}}_{\rm{2}}}} \right]}}{{{\rm{\Delta t}}}}{\rm{ = 2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{\;mol\;}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\).

Then rate of disappearance of \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) will be

1 \(50.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
2 \(3.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
3 \(2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
4 \(4.12 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
CHXII04:CHEMICAL KINETICS

320603 For the reaction,
\({{\rm{N}}_{\rm{2}}}{\rm{(g) + 3}}{{\rm{H}}_{\rm{2}}}{\rm{(g)}} \to {\rm{2N}}{{\rm{H}}_{\rm{3}}}{\rm{(g)}}\). under certain conditions of temperature and partial pressure of the reactants, the rate of formation of \({\rm{N}}{{\rm{H}}_{\rm{3}}}\,\,{\rm{is}}\,\,{\rm{0}}{\rm{.001kg}}{{\rm{h}}^{{\rm{ - 1}}}}\). The rate of conversion of \({{\rm{H}}_{\rm{2}}}\) under the same condition is:

1 \(1.82 \times 10^{-4} \mathrm{~kg} / \mathrm{h}\)
2 \(0.84 \times 10^{-3} \mathrm{~kg} / \mathrm{h}\)
3 \(1.52 \times 10^{4} \mathrm{~kg} / \mathrm{h}\)
4 \(1.82 \times 10^{-14} \mathrm{~kg} / \mathrm{h}\)
CHXII04:CHEMICAL KINETICS

320604 For a hypothetical reaction, \({\rm{A + 3B}} \to {\rm{P}}\quad {\rm{\Delta H = - 2x\;kJ/}}\) mole of A & \({\rm{M}} \to {\rm{2Q + R}}\quad {\rm{\Delta H = + x\;kJ/}}\) mole of M If these reactions are carried simultaneously in a reactor such that temperature is not changing. If rate of disappearance of B is \({\rm{y}}\,\,{\rm{M}}\,\,{\rm{se}}{{\rm{c}}^{{\rm{ - 1}}}}\) then rate of formation (in \({\rm{Mse}}{{\rm{c}}^{{\rm{ - 1}}}}\) ) of \(\mathrm{Q}\) is:

1 \(\frac{{\rm{2}}}{{\rm{3}}}{\rm{y}}\)
2 \(\frac{{\rm{3}}}{{\rm{2}}}{\rm{y}}\)
3 \(\frac{{\rm{4}}}{{\rm{3}}}{\rm{y}}\)
4 \(\frac{{\rm{3}}}{{\rm{4}}}{\rm{y}}\)
CHXII04:CHEMICAL KINETICS

320605 For the reaction \(4 \mathrm{P}+\mathrm{Q} \rightarrow 2 \mathrm{R}+2 \mathrm{~S}\). Which of the following statement(s) is/are true ?
I. Rate of appearrance of \(\mathrm{S}\) is double the rate of the disappearance of \(\mathrm{Q}\).
II. Rate of disappearance \(\mathrm{Q}\) is one fourth the rate of disappearance of \(P\)
III. Rate of formation of \(\mathrm{R}\) is equal to the rate of formation of \(\mathrm{S}\).
Choose the correct option.

1 I and II
2 II and III
3 I and III
4 I, II and III
CHXII04:CHEMICAL KINETICS

320606 Contact process is used in the formation of sulphur trioxide, \({\text{2S}}{{\text{O}}_{{\text{2(}}\;{\text{g)}}}}{\text{ + }}{{\text{O}}_{{\text{2(}}\;{\text{g)}}}} \rightleftharpoons {\text{2S}}{{\text{O}}_{{\text{3(}}\;{\text{g)}}}}\)
The rate of reaction can be expressed as

\(\frac{{{\rm{ - \Delta }}\left[ {{{\rm{O}}_{\rm{2}}}} \right]}}{{{\rm{\Delta t}}}}{\rm{ = 2}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{\;mol\;}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\).

Then rate of disappearance of \({\rm{S}}{{\rm{O}}_{\rm{2}}}\) will be

1 \(50.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
2 \(3.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
3 \(2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)
4 \(4.12 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\)