Rate of the Reaction
CHXII04:CHEMICAL KINETICS

320573 Ammonia and oxygen react at high temperature as \(4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\).
If rate of formation of \(\mathrm{NO}_{(\mathrm{g})}\) is \(3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\), then rate of disappearance of ammonia is

1 \(7.2 \times {10^{ - 3}} {\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{ }}{{\text{s}}^{{\text{ - 1}}}}\)
2 \(1.2 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{}}{{\text{s}}^{{\text{ - 1}}}}\)
3 \(2.4 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{}}{{\text{s}}^{{\text{ - 1}}}}\)
4 \(3.6 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320574 For an elementary reaction,
\(2 \mathrm{~A}+3 \mathrm{~B} \rightarrow 4 \mathrm{C}+\mathrm{D}\) the rate of appearance of
\(\mathrm{C}\) at time ' \(\mathrm{t}\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(\mathrm{B}\) at time ' \(\mathrm{t}\) ' will be

1 \(\dfrac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{{\rm{1}}}{{\rm{4}}}\left( {{\rm{2}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}} \right){\rm{mol}}\,{{\rm{L}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \(\dfrac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{molL}^{-1} \mathrm{~s}^{-1}\)
CHXII04:CHEMICAL KINETICS

320575 Assertion :
For the reaction, \(\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}\), the concentration of \(\mathrm{PCl}_{5}\) decreases with the increases in concentration of \(\mathrm{PCl}_{3}\) and \(\mathrm{Cl}_{2}\).
Reason :
During the course of a reaction, the concentration of the reactants decreases while that of products increases.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII04:CHEMICAL KINETICS

320576 For a reaction \(\frac{{\rm{1}}}{{\rm{2}}}{\rm{A}} \to {\rm{2B}}\), rate of disappearance of 'A' is related to the rate of appearance of 'B' by the expression:

1 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
2 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
3 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
4 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = 4}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
CHXII04:CHEMICAL KINETICS

320573 Ammonia and oxygen react at high temperature as \(4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\).
If rate of formation of \(\mathrm{NO}_{(\mathrm{g})}\) is \(3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\), then rate of disappearance of ammonia is

1 \(7.2 \times {10^{ - 3}} {\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{ }}{{\text{s}}^{{\text{ - 1}}}}\)
2 \(1.2 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{}}{{\text{s}}^{{\text{ - 1}}}}\)
3 \(2.4 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{}}{{\text{s}}^{{\text{ - 1}}}}\)
4 \(3.6 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320574 For an elementary reaction,
\(2 \mathrm{~A}+3 \mathrm{~B} \rightarrow 4 \mathrm{C}+\mathrm{D}\) the rate of appearance of
\(\mathrm{C}\) at time ' \(\mathrm{t}\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(\mathrm{B}\) at time ' \(\mathrm{t}\) ' will be

1 \(\dfrac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{{\rm{1}}}{{\rm{4}}}\left( {{\rm{2}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}} \right){\rm{mol}}\,{{\rm{L}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \(\dfrac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{molL}^{-1} \mathrm{~s}^{-1}\)
CHXII04:CHEMICAL KINETICS

320575 Assertion :
For the reaction, \(\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}\), the concentration of \(\mathrm{PCl}_{5}\) decreases with the increases in concentration of \(\mathrm{PCl}_{3}\) and \(\mathrm{Cl}_{2}\).
Reason :
During the course of a reaction, the concentration of the reactants decreases while that of products increases.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII04:CHEMICAL KINETICS

320576 For a reaction \(\frac{{\rm{1}}}{{\rm{2}}}{\rm{A}} \to {\rm{2B}}\), rate of disappearance of 'A' is related to the rate of appearance of 'B' by the expression:

1 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
2 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
3 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
4 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = 4}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
CHXII04:CHEMICAL KINETICS

320573 Ammonia and oxygen react at high temperature as \(4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\).
If rate of formation of \(\mathrm{NO}_{(\mathrm{g})}\) is \(3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\), then rate of disappearance of ammonia is

1 \(7.2 \times {10^{ - 3}} {\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{ }}{{\text{s}}^{{\text{ - 1}}}}\)
2 \(1.2 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{}}{{\text{s}}^{{\text{ - 1}}}}\)
3 \(2.4 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{}}{{\text{s}}^{{\text{ - 1}}}}\)
4 \(3.6 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320574 For an elementary reaction,
\(2 \mathrm{~A}+3 \mathrm{~B} \rightarrow 4 \mathrm{C}+\mathrm{D}\) the rate of appearance of
\(\mathrm{C}\) at time ' \(\mathrm{t}\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(\mathrm{B}\) at time ' \(\mathrm{t}\) ' will be

1 \(\dfrac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{{\rm{1}}}{{\rm{4}}}\left( {{\rm{2}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}} \right){\rm{mol}}\,{{\rm{L}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \(\dfrac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{molL}^{-1} \mathrm{~s}^{-1}\)
CHXII04:CHEMICAL KINETICS

320575 Assertion :
For the reaction, \(\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}\), the concentration of \(\mathrm{PCl}_{5}\) decreases with the increases in concentration of \(\mathrm{PCl}_{3}\) and \(\mathrm{Cl}_{2}\).
Reason :
During the course of a reaction, the concentration of the reactants decreases while that of products increases.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII04:CHEMICAL KINETICS

320576 For a reaction \(\frac{{\rm{1}}}{{\rm{2}}}{\rm{A}} \to {\rm{2B}}\), rate of disappearance of 'A' is related to the rate of appearance of 'B' by the expression:

1 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
2 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
3 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
4 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = 4}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
CHXII04:CHEMICAL KINETICS

320573 Ammonia and oxygen react at high temperature as \(4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\).
If rate of formation of \(\mathrm{NO}_{(\mathrm{g})}\) is \(3.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\), then rate of disappearance of ammonia is

1 \(7.2 \times {10^{ - 3}} {\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{ }}{{\text{s}}^{{\text{ - 1}}}}\)
2 \(1.2 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{}}{{\text{s}}^{{\text{ - 1}}}}\)
3 \(2.4 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{\text{}}{{\text{s}}^{{\text{ - 1}}}}\)
4 \(3.6 \times {10^{ - 3}}{\text{mol }}{{\text{L}}^{{\text{ - 1}}}}{{\text{s}}^{{\text{ - 1}}}}\)
CHXII04:CHEMICAL KINETICS

320574 For an elementary reaction,
\(2 \mathrm{~A}+3 \mathrm{~B} \rightarrow 4 \mathrm{C}+\mathrm{D}\) the rate of appearance of
\(\mathrm{C}\) at time ' \(\mathrm{t}\) ' is \(2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\). Rate of disappearance of \(\mathrm{B}\) at time ' \(\mathrm{t}\) ' will be

1 \(\dfrac{3}{4}\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
2 \(2\left(2.8 \times 10^{-3}\right) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\)
3 \(\frac{{\rm{1}}}{{\rm{4}}}\left( {{\rm{2}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}} \right){\rm{mol}}\,{{\rm{L}}^{{\rm{ - 1}}}}{\rm{\;}}{{\rm{s}}^{{\rm{ - 1}}}}\)
4 \(\dfrac{4}{3}\left(2.8 \times 10^{-3}\right) \mathrm{molL}^{-1} \mathrm{~s}^{-1}\)
CHXII04:CHEMICAL KINETICS

320575 Assertion :
For the reaction, \(\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}\), the concentration of \(\mathrm{PCl}_{5}\) decreases with the increases in concentration of \(\mathrm{PCl}_{3}\) and \(\mathrm{Cl}_{2}\).
Reason :
During the course of a reaction, the concentration of the reactants decreases while that of products increases.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII04:CHEMICAL KINETICS

320576 For a reaction \(\frac{{\rm{1}}}{{\rm{2}}}{\rm{A}} \to {\rm{2B}}\), rate of disappearance of 'A' is related to the rate of appearance of 'B' by the expression:

1 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
2 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
3 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = }}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)
4 \({\rm{ - }}\frac{{{\rm{d[A]}}}}{{{\rm{dt}}}}{\rm{ = 4}}\frac{{{\rm{d[B]}}}}{{{\rm{dt}}}}\)