Dependence of Rate on Concentration
CHXII04:CHEMICAL KINETICS

320201 \(2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\). The rate law for the above reaction is

1 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
2 rate \(=\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
3 rate \(=\dfrac{\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]}\)
4 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{\mathrm{x}}\)
CHXII04:CHEMICAL KINETICS

320202 For the reaction, \(\mathrm{A} \rightarrow\) products, \(-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}\) and at different time interval, [A] values are
supporting img

At 20 minute, rate will be

1 \(12 \mathrm{~mol} / \mathrm{min}\)
2 \(10 \mathrm{~mol} / \mathrm{min}\)
3 \(8 \mathrm{~mol} / \mathrm{min}\)
4 \(0.4 \mathrm{~mol} / \mathrm{min}\)
CHXII04:CHEMICAL KINETICS

320203 The rate expression for the reaction \({\rm{A(g) + B(g)}} \to {\rm{C(g)is}}\,\,{\rm{rate = KC}}_{\rm{A}}^{\rm{2}}{\rm{C}}_{\rm{B}}^{{\rm{1/2}}}\) What changes in the initial concentration of A and B will cause the rate of reaction increase by a factor of eight?

1 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 2}}\)
2 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
3 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 1;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
4 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 4;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 1}}\)
CHXII04:CHEMICAL KINETICS

320204 \(\mathrm{aA}+\mathrm{bB} \rightarrow\) Product, \(\mathrm{dx} / \mathrm{dt}=\mathrm{k}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}\). If conc. of A is doubled, rate becomes four times. If conc. of B is made four times, rate is doubled. What is the relation between rate of disappearance of A and that of B ?

1 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
2 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=4\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
3 \(-4\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
4 \(-2\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=-\dfrac{1}{2}\left\{\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
CHXII04:CHEMICAL KINETICS

320205 The rate law for a reaction between the substances A and B is given by
\({\rm{rate = k[A}}{{\rm{]}}^{\rm{n}}}{{\rm{[B]}}^{\rm{m}}}\)
On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as

1 \({{\rm{2}}^{{\rm{(n - m)}}}}\)
2 \({\rm{1/}}{{\rm{2}}^{{\rm{(m + n)}}}}\)
3 \(\left( {{\rm{m + n}}} \right)\)
4 \({\rm{(n - m)}}\)
CHXII04:CHEMICAL KINETICS

320201 \(2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\). The rate law for the above reaction is

1 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
2 rate \(=\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
3 rate \(=\dfrac{\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]}\)
4 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{\mathrm{x}}\)
CHXII04:CHEMICAL KINETICS

320202 For the reaction, \(\mathrm{A} \rightarrow\) products, \(-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}\) and at different time interval, [A] values are
supporting img

At 20 minute, rate will be

1 \(12 \mathrm{~mol} / \mathrm{min}\)
2 \(10 \mathrm{~mol} / \mathrm{min}\)
3 \(8 \mathrm{~mol} / \mathrm{min}\)
4 \(0.4 \mathrm{~mol} / \mathrm{min}\)
CHXII04:CHEMICAL KINETICS

320203 The rate expression for the reaction \({\rm{A(g) + B(g)}} \to {\rm{C(g)is}}\,\,{\rm{rate = KC}}_{\rm{A}}^{\rm{2}}{\rm{C}}_{\rm{B}}^{{\rm{1/2}}}\) What changes in the initial concentration of A and B will cause the rate of reaction increase by a factor of eight?

1 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 2}}\)
2 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
3 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 1;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
4 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 4;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 1}}\)
CHXII04:CHEMICAL KINETICS

320204 \(\mathrm{aA}+\mathrm{bB} \rightarrow\) Product, \(\mathrm{dx} / \mathrm{dt}=\mathrm{k}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}\). If conc. of A is doubled, rate becomes four times. If conc. of B is made four times, rate is doubled. What is the relation between rate of disappearance of A and that of B ?

1 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
2 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=4\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
3 \(-4\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
4 \(-2\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=-\dfrac{1}{2}\left\{\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
CHXII04:CHEMICAL KINETICS

320205 The rate law for a reaction between the substances A and B is given by
\({\rm{rate = k[A}}{{\rm{]}}^{\rm{n}}}{{\rm{[B]}}^{\rm{m}}}\)
On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as

1 \({{\rm{2}}^{{\rm{(n - m)}}}}\)
2 \({\rm{1/}}{{\rm{2}}^{{\rm{(m + n)}}}}\)
3 \(\left( {{\rm{m + n}}} \right)\)
4 \({\rm{(n - m)}}\)
CHXII04:CHEMICAL KINETICS

320201 \(2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\). The rate law for the above reaction is

1 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
2 rate \(=\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
3 rate \(=\dfrac{\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]}\)
4 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{\mathrm{x}}\)
CHXII04:CHEMICAL KINETICS

320202 For the reaction, \(\mathrm{A} \rightarrow\) products, \(-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}\) and at different time interval, [A] values are
supporting img

At 20 minute, rate will be

1 \(12 \mathrm{~mol} / \mathrm{min}\)
2 \(10 \mathrm{~mol} / \mathrm{min}\)
3 \(8 \mathrm{~mol} / \mathrm{min}\)
4 \(0.4 \mathrm{~mol} / \mathrm{min}\)
CHXII04:CHEMICAL KINETICS

320203 The rate expression for the reaction \({\rm{A(g) + B(g)}} \to {\rm{C(g)is}}\,\,{\rm{rate = KC}}_{\rm{A}}^{\rm{2}}{\rm{C}}_{\rm{B}}^{{\rm{1/2}}}\) What changes in the initial concentration of A and B will cause the rate of reaction increase by a factor of eight?

1 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 2}}\)
2 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
3 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 1;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
4 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 4;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 1}}\)
CHXII04:CHEMICAL KINETICS

320204 \(\mathrm{aA}+\mathrm{bB} \rightarrow\) Product, \(\mathrm{dx} / \mathrm{dt}=\mathrm{k}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}\). If conc. of A is doubled, rate becomes four times. If conc. of B is made four times, rate is doubled. What is the relation between rate of disappearance of A and that of B ?

1 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
2 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=4\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
3 \(-4\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
4 \(-2\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=-\dfrac{1}{2}\left\{\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
CHXII04:CHEMICAL KINETICS

320205 The rate law for a reaction between the substances A and B is given by
\({\rm{rate = k[A}}{{\rm{]}}^{\rm{n}}}{{\rm{[B]}}^{\rm{m}}}\)
On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as

1 \({{\rm{2}}^{{\rm{(n - m)}}}}\)
2 \({\rm{1/}}{{\rm{2}}^{{\rm{(m + n)}}}}\)
3 \(\left( {{\rm{m + n}}} \right)\)
4 \({\rm{(n - m)}}\)
CHXII04:CHEMICAL KINETICS

320201 \(2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\). The rate law for the above reaction is

1 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
2 rate \(=\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
3 rate \(=\dfrac{\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]}\)
4 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{\mathrm{x}}\)
CHXII04:CHEMICAL KINETICS

320202 For the reaction, \(\mathrm{A} \rightarrow\) products, \(-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}\) and at different time interval, [A] values are
supporting img

At 20 minute, rate will be

1 \(12 \mathrm{~mol} / \mathrm{min}\)
2 \(10 \mathrm{~mol} / \mathrm{min}\)
3 \(8 \mathrm{~mol} / \mathrm{min}\)
4 \(0.4 \mathrm{~mol} / \mathrm{min}\)
CHXII04:CHEMICAL KINETICS

320203 The rate expression for the reaction \({\rm{A(g) + B(g)}} \to {\rm{C(g)is}}\,\,{\rm{rate = KC}}_{\rm{A}}^{\rm{2}}{\rm{C}}_{\rm{B}}^{{\rm{1/2}}}\) What changes in the initial concentration of A and B will cause the rate of reaction increase by a factor of eight?

1 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 2}}\)
2 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
3 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 1;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
4 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 4;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 1}}\)
CHXII04:CHEMICAL KINETICS

320204 \(\mathrm{aA}+\mathrm{bB} \rightarrow\) Product, \(\mathrm{dx} / \mathrm{dt}=\mathrm{k}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}\). If conc. of A is doubled, rate becomes four times. If conc. of B is made four times, rate is doubled. What is the relation between rate of disappearance of A and that of B ?

1 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
2 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=4\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
3 \(-4\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
4 \(-2\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=-\dfrac{1}{2}\left\{\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
CHXII04:CHEMICAL KINETICS

320205 The rate law for a reaction between the substances A and B is given by
\({\rm{rate = k[A}}{{\rm{]}}^{\rm{n}}}{{\rm{[B]}}^{\rm{m}}}\)
On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as

1 \({{\rm{2}}^{{\rm{(n - m)}}}}\)
2 \({\rm{1/}}{{\rm{2}}^{{\rm{(m + n)}}}}\)
3 \(\left( {{\rm{m + n}}} \right)\)
4 \({\rm{(n - m)}}\)
CHXII04:CHEMICAL KINETICS

320201 \(2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\). The rate law for the above reaction is

1 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
2 rate \(=\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}\)
3 rate \(=\dfrac{\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]}\)
4 rate \(=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{\mathrm{x}}\)
CHXII04:CHEMICAL KINETICS

320202 For the reaction, \(\mathrm{A} \rightarrow\) products, \(-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}\) and at different time interval, [A] values are
supporting img

At 20 minute, rate will be

1 \(12 \mathrm{~mol} / \mathrm{min}\)
2 \(10 \mathrm{~mol} / \mathrm{min}\)
3 \(8 \mathrm{~mol} / \mathrm{min}\)
4 \(0.4 \mathrm{~mol} / \mathrm{min}\)
CHXII04:CHEMICAL KINETICS

320203 The rate expression for the reaction \({\rm{A(g) + B(g)}} \to {\rm{C(g)is}}\,\,{\rm{rate = KC}}_{\rm{A}}^{\rm{2}}{\rm{C}}_{\rm{B}}^{{\rm{1/2}}}\) What changes in the initial concentration of A and B will cause the rate of reaction increase by a factor of eight?

1 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 2}}\)
2 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 2;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
3 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 1;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 4}}\)
4 \({{\rm{C}}_{\rm{A}}}{\rm{ \times 4;}}{{\rm{C}}_{\rm{B}}}{\rm{ \times 1}}\)
CHXII04:CHEMICAL KINETICS

320204 \(\mathrm{aA}+\mathrm{bB} \rightarrow\) Product, \(\mathrm{dx} / \mathrm{dt}=\mathrm{k}[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}\). If conc. of A is doubled, rate becomes four times. If conc. of B is made four times, rate is doubled. What is the relation between rate of disappearance of A and that of B ?

1 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
2 \(\left\{-\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=4\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
3 \(-4\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=\left\{-\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
4 \(-2\left\{\dfrac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right\}=-\dfrac{1}{2}\left\{\dfrac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right\}\)
CHXII04:CHEMICAL KINETICS

320205 The rate law for a reaction between the substances A and B is given by
\({\rm{rate = k[A}}{{\rm{]}}^{\rm{n}}}{{\rm{[B]}}^{\rm{m}}}\)
On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as

1 \({{\rm{2}}^{{\rm{(n - m)}}}}\)
2 \({\rm{1/}}{{\rm{2}}^{{\rm{(m + n)}}}}\)
3 \(\left( {{\rm{m + n}}} \right)\)
4 \({\rm{(n - m)}}\)