Relation between Gibbs free energy, Equilibrium constant and emf of cell
CHXII03:ELECTROCHEMISTRY

330446 The \({{\rm{E}}^{\rm{o}}}\,\,{\rm{at}}\,\,{\rm{25^\circ C}}\) for the following reaction is 0.22 V. Calculate the equilibrium constant at \({\rm{25^\circ C}}\):
\({H_2}\left( g \right) + 2AgCl\left( s \right) \to 2Ag\left( s \right) + 2HCl\left( {aq} \right)\)
Given \({\left( {{\rm{10}}} \right)^{{\rm{7}}{\rm{.44}}}}{\rm{ = 2}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{7}}}{\rm{,log3 = 0}}{\rm{.4771)}}\)

1 \({\rm{2}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{7}}}\)
2 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{8}}}\)
3 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{6}}}\)
4 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{3}}}\)
CHXII03:ELECTROCHEMISTRY

330447 The standard emf of a primary battery having one electrode change is found to be 0.591 V at \({\rm{25^\circ C}}\). The equilibrium constant of the reaction is:

1 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{1}}}\)
2 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{10}}}}\)
3 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{30}}}}\)
4 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{5}}}\)
CHXII03:ELECTROCHEMISTRY

330448 The value of reaction quotient \({\rm{(Q)}}\), for the following cell
\({\rm{Zn}}({\rm{s}})\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(0.01{\rm{M}})\left\vert {{\rm{A}}{{\rm{g}}^ + }(1.25{\rm{M}})} \right.} \right \vert {\rm{Ag}}({\rm{s}})\)is

1 156
2 125
3 \(1.25 \times 10^{-2}\)
4 \(6.4 \times 10^{-3}\)
CHXII03:ELECTROCHEMISTRY

330449 The logarithm of the equilibrium constant of the cell reaction corresponding to the cell
\({\rm{X(s)}}\left \vert {{{\rm{X}}^{2 + }}({\rm{aq}})} \right \vert \left \vert {{{\rm{Y}}^ + }({\rm{aq}})} \right \vert {\rm{Y(s)}}\) with standard cell potential, \({\rm{E}}{^\circ _{{\rm{cell}}}} = 1.2\;{\rm{V}}\) is given by

1 12.5
2 21.5
3 40.6
4 47.2
CHXII03:ELECTROCHEMISTRY

330446 The \({{\rm{E}}^{\rm{o}}}\,\,{\rm{at}}\,\,{\rm{25^\circ C}}\) for the following reaction is 0.22 V. Calculate the equilibrium constant at \({\rm{25^\circ C}}\):
\({H_2}\left( g \right) + 2AgCl\left( s \right) \to 2Ag\left( s \right) + 2HCl\left( {aq} \right)\)
Given \({\left( {{\rm{10}}} \right)^{{\rm{7}}{\rm{.44}}}}{\rm{ = 2}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{7}}}{\rm{,log3 = 0}}{\rm{.4771)}}\)

1 \({\rm{2}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{7}}}\)
2 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{8}}}\)
3 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{6}}}\)
4 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{3}}}\)
CHXII03:ELECTROCHEMISTRY

330447 The standard emf of a primary battery having one electrode change is found to be 0.591 V at \({\rm{25^\circ C}}\). The equilibrium constant of the reaction is:

1 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{1}}}\)
2 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{10}}}}\)
3 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{30}}}}\)
4 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{5}}}\)
CHXII03:ELECTROCHEMISTRY

330448 The value of reaction quotient \({\rm{(Q)}}\), for the following cell
\({\rm{Zn}}({\rm{s}})\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(0.01{\rm{M}})\left\vert {{\rm{A}}{{\rm{g}}^ + }(1.25{\rm{M}})} \right.} \right \vert {\rm{Ag}}({\rm{s}})\)is

1 156
2 125
3 \(1.25 \times 10^{-2}\)
4 \(6.4 \times 10^{-3}\)
CHXII03:ELECTROCHEMISTRY

330449 The logarithm of the equilibrium constant of the cell reaction corresponding to the cell
\({\rm{X(s)}}\left \vert {{{\rm{X}}^{2 + }}({\rm{aq}})} \right \vert \left \vert {{{\rm{Y}}^ + }({\rm{aq}})} \right \vert {\rm{Y(s)}}\) with standard cell potential, \({\rm{E}}{^\circ _{{\rm{cell}}}} = 1.2\;{\rm{V}}\) is given by

1 12.5
2 21.5
3 40.6
4 47.2
CHXII03:ELECTROCHEMISTRY

330446 The \({{\rm{E}}^{\rm{o}}}\,\,{\rm{at}}\,\,{\rm{25^\circ C}}\) for the following reaction is 0.22 V. Calculate the equilibrium constant at \({\rm{25^\circ C}}\):
\({H_2}\left( g \right) + 2AgCl\left( s \right) \to 2Ag\left( s \right) + 2HCl\left( {aq} \right)\)
Given \({\left( {{\rm{10}}} \right)^{{\rm{7}}{\rm{.44}}}}{\rm{ = 2}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{7}}}{\rm{,log3 = 0}}{\rm{.4771)}}\)

1 \({\rm{2}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{7}}}\)
2 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{8}}}\)
3 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{6}}}\)
4 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{3}}}\)
CHXII03:ELECTROCHEMISTRY

330447 The standard emf of a primary battery having one electrode change is found to be 0.591 V at \({\rm{25^\circ C}}\). The equilibrium constant of the reaction is:

1 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{1}}}\)
2 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{10}}}}\)
3 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{30}}}}\)
4 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{5}}}\)
CHXII03:ELECTROCHEMISTRY

330448 The value of reaction quotient \({\rm{(Q)}}\), for the following cell
\({\rm{Zn}}({\rm{s}})\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(0.01{\rm{M}})\left\vert {{\rm{A}}{{\rm{g}}^ + }(1.25{\rm{M}})} \right.} \right \vert {\rm{Ag}}({\rm{s}})\)is

1 156
2 125
3 \(1.25 \times 10^{-2}\)
4 \(6.4 \times 10^{-3}\)
CHXII03:ELECTROCHEMISTRY

330449 The logarithm of the equilibrium constant of the cell reaction corresponding to the cell
\({\rm{X(s)}}\left \vert {{{\rm{X}}^{2 + }}({\rm{aq}})} \right \vert \left \vert {{{\rm{Y}}^ + }({\rm{aq}})} \right \vert {\rm{Y(s)}}\) with standard cell potential, \({\rm{E}}{^\circ _{{\rm{cell}}}} = 1.2\;{\rm{V}}\) is given by

1 12.5
2 21.5
3 40.6
4 47.2
CHXII03:ELECTROCHEMISTRY

330446 The \({{\rm{E}}^{\rm{o}}}\,\,{\rm{at}}\,\,{\rm{25^\circ C}}\) for the following reaction is 0.22 V. Calculate the equilibrium constant at \({\rm{25^\circ C}}\):
\({H_2}\left( g \right) + 2AgCl\left( s \right) \to 2Ag\left( s \right) + 2HCl\left( {aq} \right)\)
Given \({\left( {{\rm{10}}} \right)^{{\rm{7}}{\rm{.44}}}}{\rm{ = 2}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{7}}}{\rm{,log3 = 0}}{\rm{.4771)}}\)

1 \({\rm{2}}{\rm{.8 \times 1}}{{\rm{0}}^{\rm{7}}}\)
2 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{8}}}\)
3 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{6}}}\)
4 \({\rm{5}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{3}}}\)
CHXII03:ELECTROCHEMISTRY

330447 The standard emf of a primary battery having one electrode change is found to be 0.591 V at \({\rm{25^\circ C}}\). The equilibrium constant of the reaction is:

1 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{1}}}\)
2 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{10}}}}\)
3 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{30}}}}\)
4 \({\rm{1}}{\rm{.0 \times 1}}{{\rm{0}}^{\rm{5}}}\)
CHXII03:ELECTROCHEMISTRY

330448 The value of reaction quotient \({\rm{(Q)}}\), for the following cell
\({\rm{Zn}}({\rm{s}})\left \vert {{\rm{Z}}{{\rm{n}}^{2 + }}(0.01{\rm{M}})\left\vert {{\rm{A}}{{\rm{g}}^ + }(1.25{\rm{M}})} \right.} \right \vert {\rm{Ag}}({\rm{s}})\)is

1 156
2 125
3 \(1.25 \times 10^{-2}\)
4 \(6.4 \times 10^{-3}\)
CHXII03:ELECTROCHEMISTRY

330449 The logarithm of the equilibrium constant of the cell reaction corresponding to the cell
\({\rm{X(s)}}\left \vert {{{\rm{X}}^{2 + }}({\rm{aq}})} \right \vert \left \vert {{{\rm{Y}}^ + }({\rm{aq}})} \right \vert {\rm{Y(s)}}\) with standard cell potential, \({\rm{E}}{^\circ _{{\rm{cell}}}} = 1.2\;{\rm{V}}\) is given by

1 12.5
2 21.5
3 40.6
4 47.2