Measurement of the Conductivity
CHXII03:ELECTROCHEMISTRY

330400 Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is\({\rm{100}}\,\,{\rm{\Omega }}\). The conductivity of this solution is \({\rm{1}}{\rm{.29}}\,\,{\rm{S}}\,\,{{\rm{m}}^{{\rm{ - 1}}}}\). Resistance of the same cell when filled with 0.02 M of the same solution is \({\rm{520}}\,\,{\rm{\Omega }}\). The molar conductivity of 0.02 M solution of the electrolyte will be:

1 \({\rm{12}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{124 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{1240 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.24 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330401 The conductivity of \({\text{0}}{\text{.04}}\,\,{\text{M BaC}}{{\text{l}}_{\text{2}}}\) solution is \(0.0112 \Omega^{-1} \mathrm{~cm}^{-1}\) at \(25^{\circ} \mathrm{C}\). What is its molar conductivity?

1 \(357.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(140.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(44.8 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(280.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330402 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\). Given that \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}\) and \(\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\) are the equivalent conductance at infinite dilution of the respective ions?

1 \(2\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + 3\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
2 \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
3 \(\left( {\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}} \right) \times 6\)
4 \(\frac{1}{3}\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \frac{1}{2}\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
CHXII03:ELECTROCHEMISTRY

330403 Assertion :
Equivalent conductance of all electrolytes decreases with increasing concentration.
Reason :
Lesser number of ions are available per gram equivalent at higher concentration.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330404 The equivalent conductance at infinite dilution of a weak acid such as HF

1 can be determined by extrapolation of measurements on dilute solutions of \(\mathrm{HCl}, \mathrm{HBr}\) and \(\mathrm{HI}\)
2 can be determined by measurement on very dilute \(\mathrm{HF}\) solutions
3 can best be determined from measurements on dilute solutions of \(\mathrm{NaF}, \mathrm{NaCl}\) and \(\mathrm{HCl}\)
4 is an undefined quantity.
CHXII03:ELECTROCHEMISTRY

330400 Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is\({\rm{100}}\,\,{\rm{\Omega }}\). The conductivity of this solution is \({\rm{1}}{\rm{.29}}\,\,{\rm{S}}\,\,{{\rm{m}}^{{\rm{ - 1}}}}\). Resistance of the same cell when filled with 0.02 M of the same solution is \({\rm{520}}\,\,{\rm{\Omega }}\). The molar conductivity of 0.02 M solution of the electrolyte will be:

1 \({\rm{12}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{124 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{1240 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.24 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330401 The conductivity of \({\text{0}}{\text{.04}}\,\,{\text{M BaC}}{{\text{l}}_{\text{2}}}\) solution is \(0.0112 \Omega^{-1} \mathrm{~cm}^{-1}\) at \(25^{\circ} \mathrm{C}\). What is its molar conductivity?

1 \(357.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(140.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(44.8 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(280.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330402 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\). Given that \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}\) and \(\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\) are the equivalent conductance at infinite dilution of the respective ions?

1 \(2\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + 3\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
2 \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
3 \(\left( {\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}} \right) \times 6\)
4 \(\frac{1}{3}\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \frac{1}{2}\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
CHXII03:ELECTROCHEMISTRY

330403 Assertion :
Equivalent conductance of all electrolytes decreases with increasing concentration.
Reason :
Lesser number of ions are available per gram equivalent at higher concentration.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330404 The equivalent conductance at infinite dilution of a weak acid such as HF

1 can be determined by extrapolation of measurements on dilute solutions of \(\mathrm{HCl}, \mathrm{HBr}\) and \(\mathrm{HI}\)
2 can be determined by measurement on very dilute \(\mathrm{HF}\) solutions
3 can best be determined from measurements on dilute solutions of \(\mathrm{NaF}, \mathrm{NaCl}\) and \(\mathrm{HCl}\)
4 is an undefined quantity.
CHXII03:ELECTROCHEMISTRY

330400 Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is\({\rm{100}}\,\,{\rm{\Omega }}\). The conductivity of this solution is \({\rm{1}}{\rm{.29}}\,\,{\rm{S}}\,\,{{\rm{m}}^{{\rm{ - 1}}}}\). Resistance of the same cell when filled with 0.02 M of the same solution is \({\rm{520}}\,\,{\rm{\Omega }}\). The molar conductivity of 0.02 M solution of the electrolyte will be:

1 \({\rm{12}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{124 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{1240 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.24 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330401 The conductivity of \({\text{0}}{\text{.04}}\,\,{\text{M BaC}}{{\text{l}}_{\text{2}}}\) solution is \(0.0112 \Omega^{-1} \mathrm{~cm}^{-1}\) at \(25^{\circ} \mathrm{C}\). What is its molar conductivity?

1 \(357.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(140.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(44.8 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(280.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330402 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\). Given that \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}\) and \(\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\) are the equivalent conductance at infinite dilution of the respective ions?

1 \(2\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + 3\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
2 \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
3 \(\left( {\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}} \right) \times 6\)
4 \(\frac{1}{3}\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \frac{1}{2}\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
CHXII03:ELECTROCHEMISTRY

330403 Assertion :
Equivalent conductance of all electrolytes decreases with increasing concentration.
Reason :
Lesser number of ions are available per gram equivalent at higher concentration.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330404 The equivalent conductance at infinite dilution of a weak acid such as HF

1 can be determined by extrapolation of measurements on dilute solutions of \(\mathrm{HCl}, \mathrm{HBr}\) and \(\mathrm{HI}\)
2 can be determined by measurement on very dilute \(\mathrm{HF}\) solutions
3 can best be determined from measurements on dilute solutions of \(\mathrm{NaF}, \mathrm{NaCl}\) and \(\mathrm{HCl}\)
4 is an undefined quantity.
CHXII03:ELECTROCHEMISTRY

330400 Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is\({\rm{100}}\,\,{\rm{\Omega }}\). The conductivity of this solution is \({\rm{1}}{\rm{.29}}\,\,{\rm{S}}\,\,{{\rm{m}}^{{\rm{ - 1}}}}\). Resistance of the same cell when filled with 0.02 M of the same solution is \({\rm{520}}\,\,{\rm{\Omega }}\). The molar conductivity of 0.02 M solution of the electrolyte will be:

1 \({\rm{12}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{124 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{1240 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.24 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330401 The conductivity of \({\text{0}}{\text{.04}}\,\,{\text{M BaC}}{{\text{l}}_{\text{2}}}\) solution is \(0.0112 \Omega^{-1} \mathrm{~cm}^{-1}\) at \(25^{\circ} \mathrm{C}\). What is its molar conductivity?

1 \(357.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(140.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(44.8 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(280.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330402 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\). Given that \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}\) and \(\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\) are the equivalent conductance at infinite dilution of the respective ions?

1 \(2\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + 3\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
2 \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
3 \(\left( {\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}} \right) \times 6\)
4 \(\frac{1}{3}\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \frac{1}{2}\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
CHXII03:ELECTROCHEMISTRY

330403 Assertion :
Equivalent conductance of all electrolytes decreases with increasing concentration.
Reason :
Lesser number of ions are available per gram equivalent at higher concentration.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330404 The equivalent conductance at infinite dilution of a weak acid such as HF

1 can be determined by extrapolation of measurements on dilute solutions of \(\mathrm{HCl}, \mathrm{HBr}\) and \(\mathrm{HI}\)
2 can be determined by measurement on very dilute \(\mathrm{HF}\) solutions
3 can best be determined from measurements on dilute solutions of \(\mathrm{NaF}, \mathrm{NaCl}\) and \(\mathrm{HCl}\)
4 is an undefined quantity.
CHXII03:ELECTROCHEMISTRY

330400 Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is\({\rm{100}}\,\,{\rm{\Omega }}\). The conductivity of this solution is \({\rm{1}}{\rm{.29}}\,\,{\rm{S}}\,\,{{\rm{m}}^{{\rm{ - 1}}}}\). Resistance of the same cell when filled with 0.02 M of the same solution is \({\rm{520}}\,\,{\rm{\Omega }}\). The molar conductivity of 0.02 M solution of the electrolyte will be:

1 \({\rm{12}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
2 \({\rm{124 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
3 \({\rm{1240 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
4 \({\rm{1}}{\rm{.24 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{S}}\,\,{{\rm{m}}^{\rm{2}}}\,\,{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\)
CHXII03:ELECTROCHEMISTRY

330401 The conductivity of \({\text{0}}{\text{.04}}\,\,{\text{M BaC}}{{\text{l}}_{\text{2}}}\) solution is \(0.0112 \Omega^{-1} \mathrm{~cm}^{-1}\) at \(25^{\circ} \mathrm{C}\). What is its molar conductivity?

1 \(357.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
2 \(140.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
3 \(44.8 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
4 \(280.0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\)
CHXII03:ELECTROCHEMISTRY

330402 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\). Given that \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{{\rm{3 + }}}}}}\) and \(\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\) are the equivalent conductance at infinite dilution of the respective ions?

1 \(2\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + 3\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
2 \(\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
3 \(\left( {\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}} \right) \times 6\)
4 \(\frac{1}{3}\Lambda {^\circ _{{\rm{A}}{{\rm{l}}^{3 + }}}} + \frac{1}{2}\Lambda {^\circ _{{\rm{SO}}_4^{2 - }}}\)
CHXII03:ELECTROCHEMISTRY

330403 Assertion :
Equivalent conductance of all electrolytes decreases with increasing concentration.
Reason :
Lesser number of ions are available per gram equivalent at higher concentration.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXII03:ELECTROCHEMISTRY

330404 The equivalent conductance at infinite dilution of a weak acid such as HF

1 can be determined by extrapolation of measurements on dilute solutions of \(\mathrm{HCl}, \mathrm{HBr}\) and \(\mathrm{HI}\)
2 can be determined by measurement on very dilute \(\mathrm{HF}\) solutions
3 can best be determined from measurements on dilute solutions of \(\mathrm{NaF}, \mathrm{NaCl}\) and \(\mathrm{HCl}\)
4 is an undefined quantity.