Elevation in Boiling Point
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXII02:SOLUTIONS

319145 A solution of urea (molar mass 60) boils at \({\rm{100}}{\rm{.1}}{{\rm{8}}^{\rm{^\circ }}}{\rm{C}}\) at atmospheric pressure. If \({{\rm{K}}_{\rm{f}}}\,\,{\rm{and}}\,\,{{\rm{K}}_{\rm{b}}}\) for water are \({\rm{1}}{\rm{.86}}{\mkern 1mu} {\mkern 1mu} {\rm{and}}{\mkern 1mu} {\mkern 1mu} {\rm{0}}{\rm{.512}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{molalit}}{{\rm{y}}^{{\rm{ - 1}}}}\) respectively, the above solution will freeze at

1 \({\rm{ - 0}}{\rm{.65}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
2 \({\rm{0}}{\rm{.65}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
3 \({\rm{ - 6}}{\rm{.5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
4 \({\rm{6}}{\rm{.5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
CHXII02:SOLUTIONS

319146 Equimolal solutions of two non - electrolytes in the same solvent have:

1 different b.pt. and different f.pt.
2 same b.pt. and same f.pt.
3 same b.pt. but different f.pt.
4 different b.pt. but same f.pt.
CHXII02:SOLUTIONS

319147 The molal elevation of an unknown solution is equal to the molal elevation of 0.1 M solution of urea. The concentration of unknown solution is

1 1 M
2 0.01 M
3 0.1 M
4 None of these
CHXII02:SOLUTIONS

319148 The unit of ebullioscopic constant is

1 \({\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{kg}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} {\left( {{\rm{molality}}} \right)^{{\rm{ - 1}}}}\)
2 \({\rm{mol}}{\mkern 1mu} {\mkern 1mu} {\rm{kg}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} \left( {{\rm{molality}}} \right)\)
3 \({\rm{kg}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\left( {{\rm{molality}}} \right)^{{\rm{ - 1}}}}\)
4 \({\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{mol}}{\mkern 1mu} {\mkern 1mu} {\rm{k}}{{\rm{g}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} \left( {{\rm{molality}}} \right)\)
CHXII02:SOLUTIONS

319145 A solution of urea (molar mass 60) boils at \({\rm{100}}{\rm{.1}}{{\rm{8}}^{\rm{^\circ }}}{\rm{C}}\) at atmospheric pressure. If \({{\rm{K}}_{\rm{f}}}\,\,{\rm{and}}\,\,{{\rm{K}}_{\rm{b}}}\) for water are \({\rm{1}}{\rm{.86}}{\mkern 1mu} {\mkern 1mu} {\rm{and}}{\mkern 1mu} {\mkern 1mu} {\rm{0}}{\rm{.512}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{molalit}}{{\rm{y}}^{{\rm{ - 1}}}}\) respectively, the above solution will freeze at

1 \({\rm{ - 0}}{\rm{.65}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
2 \({\rm{0}}{\rm{.65}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
3 \({\rm{ - 6}}{\rm{.5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
4 \({\rm{6}}{\rm{.5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
CHXII02:SOLUTIONS

319146 Equimolal solutions of two non - electrolytes in the same solvent have:

1 different b.pt. and different f.pt.
2 same b.pt. and same f.pt.
3 same b.pt. but different f.pt.
4 different b.pt. but same f.pt.
CHXII02:SOLUTIONS

319147 The molal elevation of an unknown solution is equal to the molal elevation of 0.1 M solution of urea. The concentration of unknown solution is

1 1 M
2 0.01 M
3 0.1 M
4 None of these
CHXII02:SOLUTIONS

319148 The unit of ebullioscopic constant is

1 \({\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{kg}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} {\left( {{\rm{molality}}} \right)^{{\rm{ - 1}}}}\)
2 \({\rm{mol}}{\mkern 1mu} {\mkern 1mu} {\rm{kg}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} \left( {{\rm{molality}}} \right)\)
3 \({\rm{kg}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\left( {{\rm{molality}}} \right)^{{\rm{ - 1}}}}\)
4 \({\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{mol}}{\mkern 1mu} {\mkern 1mu} {\rm{k}}{{\rm{g}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} \left( {{\rm{molality}}} \right)\)
CHXII02:SOLUTIONS

319145 A solution of urea (molar mass 60) boils at \({\rm{100}}{\rm{.1}}{{\rm{8}}^{\rm{^\circ }}}{\rm{C}}\) at atmospheric pressure. If \({{\rm{K}}_{\rm{f}}}\,\,{\rm{and}}\,\,{{\rm{K}}_{\rm{b}}}\) for water are \({\rm{1}}{\rm{.86}}{\mkern 1mu} {\mkern 1mu} {\rm{and}}{\mkern 1mu} {\mkern 1mu} {\rm{0}}{\rm{.512}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{molalit}}{{\rm{y}}^{{\rm{ - 1}}}}\) respectively, the above solution will freeze at

1 \({\rm{ - 0}}{\rm{.65}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
2 \({\rm{0}}{\rm{.65}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
3 \({\rm{ - 6}}{\rm{.5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
4 \({\rm{6}}{\rm{.5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
CHXII02:SOLUTIONS

319146 Equimolal solutions of two non - electrolytes in the same solvent have:

1 different b.pt. and different f.pt.
2 same b.pt. and same f.pt.
3 same b.pt. but different f.pt.
4 different b.pt. but same f.pt.
CHXII02:SOLUTIONS

319147 The molal elevation of an unknown solution is equal to the molal elevation of 0.1 M solution of urea. The concentration of unknown solution is

1 1 M
2 0.01 M
3 0.1 M
4 None of these
CHXII02:SOLUTIONS

319148 The unit of ebullioscopic constant is

1 \({\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{kg}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} {\left( {{\rm{molality}}} \right)^{{\rm{ - 1}}}}\)
2 \({\rm{mol}}{\mkern 1mu} {\mkern 1mu} {\rm{kg}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} \left( {{\rm{molality}}} \right)\)
3 \({\rm{kg}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\left( {{\rm{molality}}} \right)^{{\rm{ - 1}}}}\)
4 \({\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{mol}}{\mkern 1mu} {\mkern 1mu} {\rm{k}}{{\rm{g}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} \left( {{\rm{molality}}} \right)\)
CHXII02:SOLUTIONS

319145 A solution of urea (molar mass 60) boils at \({\rm{100}}{\rm{.1}}{{\rm{8}}^{\rm{^\circ }}}{\rm{C}}\) at atmospheric pressure. If \({{\rm{K}}_{\rm{f}}}\,\,{\rm{and}}\,\,{{\rm{K}}_{\rm{b}}}\) for water are \({\rm{1}}{\rm{.86}}{\mkern 1mu} {\mkern 1mu} {\rm{and}}{\mkern 1mu} {\mkern 1mu} {\rm{0}}{\rm{.512}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{molalit}}{{\rm{y}}^{{\rm{ - 1}}}}\) respectively, the above solution will freeze at

1 \({\rm{ - 0}}{\rm{.65}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
2 \({\rm{0}}{\rm{.65}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
3 \({\rm{ - 6}}{\rm{.5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
4 \({\rm{6}}{\rm{.5}}{{\rm{4}}^{\rm{^\circ }}}{\rm{C}}\)
CHXII02:SOLUTIONS

319146 Equimolal solutions of two non - electrolytes in the same solvent have:

1 different b.pt. and different f.pt.
2 same b.pt. and same f.pt.
3 same b.pt. but different f.pt.
4 different b.pt. but same f.pt.
CHXII02:SOLUTIONS

319147 The molal elevation of an unknown solution is equal to the molal elevation of 0.1 M solution of urea. The concentration of unknown solution is

1 1 M
2 0.01 M
3 0.1 M
4 None of these
CHXII02:SOLUTIONS

319148 The unit of ebullioscopic constant is

1 \({\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{kg}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} {\left( {{\rm{molality}}} \right)^{{\rm{ - 1}}}}\)
2 \({\rm{mol}}{\mkern 1mu} {\mkern 1mu} {\rm{kg}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} \left( {{\rm{molality}}} \right)\)
3 \({\rm{kg}}{\mkern 1mu} {\mkern 1mu} {\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {{\rm{K}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\left( {{\rm{molality}}} \right)^{{\rm{ - 1}}}}\)
4 \({\rm{K}}{\mkern 1mu} {\mkern 1mu} {\rm{mol}}{\mkern 1mu} {\mkern 1mu} {\rm{k}}{{\rm{g}}^{{\rm{ - 1}}}}{\mkern 1mu} {\mkern 1mu} {\rm{or}}{\mkern 1mu} {\mkern 1mu} {\rm{K}}{\mkern 1mu} {\mkern 1mu} \left( {{\rm{molality}}} \right)\)