318999
If the various terms in the given below expressions have usual meanings, the van’t Hoff factor (i) cannot be calculated by which one of the following expressions?
Van’t Hoff equation is \({\rm{\pi V = inRT}}\) For depression in freezing point, \({\rm{\Delta }}{{\rm{T}}_{\rm{f}}}{\rm{ = i \times }}{{\rm{K}}_{\rm{f}}}{\rm{ \times m}}\) For elevation in boiling point, \({\rm{\Delta }}{{\rm{T}}_{\rm{b}}}{\rm{ = i \times }}{{\rm{K}}_{\rm{b}}}{\rm{ \times m}}\) For lowering of vapour pressure, \(\frac{{{\rm{P}}_{{\rm{solvent}}}^{\rm{0}}{\rm{ - }}{{\rm{P}}_{{\rm{solution}}}}}}{{{\rm{P}}_{{\rm{solvent}}}^{\rm{0}}}}{\rm{ = i}}\left( {\frac{{\rm{n}}}{{{\rm{N + n}}}}} \right){\rm{.}}\)
CHXII02:SOLUTIONS
319000
Which of the following aqueous solutions has highest freezing point?
\({\rm{\Delta }}{{\rm{T}}_{\rm{f}}}{\rm{ = i}}{{\rm{K}}_{\rm{f}}}{\rm{m}}\) As m = 0.1 molal for all given solutions thus, lower the value of i, lower will be the depression in freezing point \(\left( {{\rm{\Delta }}{{\rm{T}}_{\rm{f}}}} \right)\) and higher will be the freezing point of the solution. \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{;i = 5}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{BaC}}{{\rm{l}}_{\rm{2}}}{\rm{;i = 3}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{AlC}}{{\rm{l}}_{\rm{3}}}{\rm{;i = 4}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl;i = 2}}\) Thus, 0.1 molal \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}\) will have highest freezing point.
KCET - 2017
CHXII02:SOLUTIONS
319001
The van’t Hoff factor 'I' accounts for
1 extent of dissolution of solute
2 extent of dissociation of solute
3 extent of mobility of solute
4 extent of solubility of solute
Explanation:
van’t Hoff factor 'i' expresses the extent of association or dissociation of solute in the solution..
CHXII02:SOLUTIONS
319002
Which of the following aqueous solutions should have the highest boiling point ?
318999
If the various terms in the given below expressions have usual meanings, the van’t Hoff factor (i) cannot be calculated by which one of the following expressions?
Van’t Hoff equation is \({\rm{\pi V = inRT}}\) For depression in freezing point, \({\rm{\Delta }}{{\rm{T}}_{\rm{f}}}{\rm{ = i \times }}{{\rm{K}}_{\rm{f}}}{\rm{ \times m}}\) For elevation in boiling point, \({\rm{\Delta }}{{\rm{T}}_{\rm{b}}}{\rm{ = i \times }}{{\rm{K}}_{\rm{b}}}{\rm{ \times m}}\) For lowering of vapour pressure, \(\frac{{{\rm{P}}_{{\rm{solvent}}}^{\rm{0}}{\rm{ - }}{{\rm{P}}_{{\rm{solution}}}}}}{{{\rm{P}}_{{\rm{solvent}}}^{\rm{0}}}}{\rm{ = i}}\left( {\frac{{\rm{n}}}{{{\rm{N + n}}}}} \right){\rm{.}}\)
CHXII02:SOLUTIONS
319000
Which of the following aqueous solutions has highest freezing point?
\({\rm{\Delta }}{{\rm{T}}_{\rm{f}}}{\rm{ = i}}{{\rm{K}}_{\rm{f}}}{\rm{m}}\) As m = 0.1 molal for all given solutions thus, lower the value of i, lower will be the depression in freezing point \(\left( {{\rm{\Delta }}{{\rm{T}}_{\rm{f}}}} \right)\) and higher will be the freezing point of the solution. \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{;i = 5}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{BaC}}{{\rm{l}}_{\rm{2}}}{\rm{;i = 3}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{AlC}}{{\rm{l}}_{\rm{3}}}{\rm{;i = 4}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl;i = 2}}\) Thus, 0.1 molal \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}\) will have highest freezing point.
KCET - 2017
CHXII02:SOLUTIONS
319001
The van’t Hoff factor 'I' accounts for
1 extent of dissolution of solute
2 extent of dissociation of solute
3 extent of mobility of solute
4 extent of solubility of solute
Explanation:
van’t Hoff factor 'i' expresses the extent of association or dissociation of solute in the solution..
CHXII02:SOLUTIONS
319002
Which of the following aqueous solutions should have the highest boiling point ?
318999
If the various terms in the given below expressions have usual meanings, the van’t Hoff factor (i) cannot be calculated by which one of the following expressions?
Van’t Hoff equation is \({\rm{\pi V = inRT}}\) For depression in freezing point, \({\rm{\Delta }}{{\rm{T}}_{\rm{f}}}{\rm{ = i \times }}{{\rm{K}}_{\rm{f}}}{\rm{ \times m}}\) For elevation in boiling point, \({\rm{\Delta }}{{\rm{T}}_{\rm{b}}}{\rm{ = i \times }}{{\rm{K}}_{\rm{b}}}{\rm{ \times m}}\) For lowering of vapour pressure, \(\frac{{{\rm{P}}_{{\rm{solvent}}}^{\rm{0}}{\rm{ - }}{{\rm{P}}_{{\rm{solution}}}}}}{{{\rm{P}}_{{\rm{solvent}}}^{\rm{0}}}}{\rm{ = i}}\left( {\frac{{\rm{n}}}{{{\rm{N + n}}}}} \right){\rm{.}}\)
CHXII02:SOLUTIONS
319000
Which of the following aqueous solutions has highest freezing point?
\({\rm{\Delta }}{{\rm{T}}_{\rm{f}}}{\rm{ = i}}{{\rm{K}}_{\rm{f}}}{\rm{m}}\) As m = 0.1 molal for all given solutions thus, lower the value of i, lower will be the depression in freezing point \(\left( {{\rm{\Delta }}{{\rm{T}}_{\rm{f}}}} \right)\) and higher will be the freezing point of the solution. \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{;i = 5}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{BaC}}{{\rm{l}}_{\rm{2}}}{\rm{;i = 3}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{AlC}}{{\rm{l}}_{\rm{3}}}{\rm{;i = 4}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl;i = 2}}\) Thus, 0.1 molal \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}\) will have highest freezing point.
KCET - 2017
CHXII02:SOLUTIONS
319001
The van’t Hoff factor 'I' accounts for
1 extent of dissolution of solute
2 extent of dissociation of solute
3 extent of mobility of solute
4 extent of solubility of solute
Explanation:
van’t Hoff factor 'i' expresses the extent of association or dissociation of solute in the solution..
CHXII02:SOLUTIONS
319002
Which of the following aqueous solutions should have the highest boiling point ?
318999
If the various terms in the given below expressions have usual meanings, the van’t Hoff factor (i) cannot be calculated by which one of the following expressions?
Van’t Hoff equation is \({\rm{\pi V = inRT}}\) For depression in freezing point, \({\rm{\Delta }}{{\rm{T}}_{\rm{f}}}{\rm{ = i \times }}{{\rm{K}}_{\rm{f}}}{\rm{ \times m}}\) For elevation in boiling point, \({\rm{\Delta }}{{\rm{T}}_{\rm{b}}}{\rm{ = i \times }}{{\rm{K}}_{\rm{b}}}{\rm{ \times m}}\) For lowering of vapour pressure, \(\frac{{{\rm{P}}_{{\rm{solvent}}}^{\rm{0}}{\rm{ - }}{{\rm{P}}_{{\rm{solution}}}}}}{{{\rm{P}}_{{\rm{solvent}}}^{\rm{0}}}}{\rm{ = i}}\left( {\frac{{\rm{n}}}{{{\rm{N + n}}}}} \right){\rm{.}}\)
CHXII02:SOLUTIONS
319000
Which of the following aqueous solutions has highest freezing point?
\({\rm{\Delta }}{{\rm{T}}_{\rm{f}}}{\rm{ = i}}{{\rm{K}}_{\rm{f}}}{\rm{m}}\) As m = 0.1 molal for all given solutions thus, lower the value of i, lower will be the depression in freezing point \(\left( {{\rm{\Delta }}{{\rm{T}}_{\rm{f}}}} \right)\) and higher will be the freezing point of the solution. \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{A}}{{\rm{l}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{;i = 5}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{BaC}}{{\rm{l}}_{\rm{2}}}{\rm{;i = 3}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{AlC}}{{\rm{l}}_{\rm{3}}}{\rm{;i = 4}}\) \({\rm{For}}{\mkern 1mu} {\mkern 1mu} {\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl;i = 2}}\) Thus, 0.1 molal \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{Cl}}\) will have highest freezing point.
KCET - 2017
CHXII02:SOLUTIONS
319001
The van’t Hoff factor 'I' accounts for
1 extent of dissolution of solute
2 extent of dissociation of solute
3 extent of mobility of solute
4 extent of solubility of solute
Explanation:
van’t Hoff factor 'i' expresses the extent of association or dissociation of solute in the solution..
CHXII02:SOLUTIONS
319002
Which of the following aqueous solutions should have the highest boiling point ?