pH concept
CHXI07:EQUILIBRIUM

315001 Which of the following solutions will have \(\mathrm{pH}\) close to 1.0 ?

1 \({\text{100 ml of}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 100 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
2 \({\text{50 ml of}}\,\,\frac{{\text{M}}}{{{\text{10}}}}{\text{HCl + 45 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
3 \({\text{10 ml of}}\,\,\frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 90 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
4 \({\text{75 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 25 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
CHXI07:EQUILIBRIUM

315002 What is \(\left[\mathrm{H}^{+}\right]\) of a solution having \({\rm{0}}{\rm{.1}}\,{\rm{M}}\,{\rm{HCN}}\) and \({\rm{0}}{\rm{.2}}\,{\rm{M}}\,{\rm{NaCN?}}\) \({\rm{(}}{{\rm{K}}_{\rm{a}}}\,{\rm{for}}\,\left. {{\rm{HCN}} = {\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}} \right)\)

1 \({\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{10}}}}\)
2 \({\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{5}}}\)
3 \({\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}\)
4 \({\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}\)
CHXI07:EQUILIBRIUM

315003 The \(\mathrm{pH}\) of a solution obtained be mixing equal volume of \(\frac{{\text{N}}}{{{\text{10}}}}{\text{ NaOH}}\,\,{\text{and }}\frac{{\text{N}}}{{20}}{\text{HCl}}\) is

1 13.4
2 12.4
3 7.6
4 1.6
CHXI07:EQUILIBRIUM

315004 \({\text{30 cc of }}\frac{{\text{M}}}{{\text{3}}}{\text{ HCl, 20 cc of }}{\mkern 1mu} \frac{{\text{M}}}{{\text{2}}}{\text{ HN}}{{\text{O}}_{\text{3}}}\) and \({\text{40}}\,\,{\text{cc}}\) of \(\dfrac{\mathrm{M}}{4} \mathrm{NaOH}\) solutions are mixed and the volume was made up to \({\text{1}}\,\,{\text{d}}{{\text{m}}^{\text{3}}}\). The \(\mathrm{pH}\) of the resulting solution is

1 2
2 1
3 3
4 8
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI07:EQUILIBRIUM

315001 Which of the following solutions will have \(\mathrm{pH}\) close to 1.0 ?

1 \({\text{100 ml of}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 100 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
2 \({\text{50 ml of}}\,\,\frac{{\text{M}}}{{{\text{10}}}}{\text{HCl + 45 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
3 \({\text{10 ml of}}\,\,\frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 90 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
4 \({\text{75 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 25 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
CHXI07:EQUILIBRIUM

315002 What is \(\left[\mathrm{H}^{+}\right]\) of a solution having \({\rm{0}}{\rm{.1}}\,{\rm{M}}\,{\rm{HCN}}\) and \({\rm{0}}{\rm{.2}}\,{\rm{M}}\,{\rm{NaCN?}}\) \({\rm{(}}{{\rm{K}}_{\rm{a}}}\,{\rm{for}}\,\left. {{\rm{HCN}} = {\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}} \right)\)

1 \({\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{10}}}}\)
2 \({\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{5}}}\)
3 \({\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}\)
4 \({\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}\)
CHXI07:EQUILIBRIUM

315003 The \(\mathrm{pH}\) of a solution obtained be mixing equal volume of \(\frac{{\text{N}}}{{{\text{10}}}}{\text{ NaOH}}\,\,{\text{and }}\frac{{\text{N}}}{{20}}{\text{HCl}}\) is

1 13.4
2 12.4
3 7.6
4 1.6
CHXI07:EQUILIBRIUM

315004 \({\text{30 cc of }}\frac{{\text{M}}}{{\text{3}}}{\text{ HCl, 20 cc of }}{\mkern 1mu} \frac{{\text{M}}}{{\text{2}}}{\text{ HN}}{{\text{O}}_{\text{3}}}\) and \({\text{40}}\,\,{\text{cc}}\) of \(\dfrac{\mathrm{M}}{4} \mathrm{NaOH}\) solutions are mixed and the volume was made up to \({\text{1}}\,\,{\text{d}}{{\text{m}}^{\text{3}}}\). The \(\mathrm{pH}\) of the resulting solution is

1 2
2 1
3 3
4 8
CHXI07:EQUILIBRIUM

315001 Which of the following solutions will have \(\mathrm{pH}\) close to 1.0 ?

1 \({\text{100 ml of}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 100 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
2 \({\text{50 ml of}}\,\,\frac{{\text{M}}}{{{\text{10}}}}{\text{HCl + 45 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
3 \({\text{10 ml of}}\,\,\frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 90 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
4 \({\text{75 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 25 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
CHXI07:EQUILIBRIUM

315002 What is \(\left[\mathrm{H}^{+}\right]\) of a solution having \({\rm{0}}{\rm{.1}}\,{\rm{M}}\,{\rm{HCN}}\) and \({\rm{0}}{\rm{.2}}\,{\rm{M}}\,{\rm{NaCN?}}\) \({\rm{(}}{{\rm{K}}_{\rm{a}}}\,{\rm{for}}\,\left. {{\rm{HCN}} = {\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}} \right)\)

1 \({\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{10}}}}\)
2 \({\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{5}}}\)
3 \({\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}\)
4 \({\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}\)
CHXI07:EQUILIBRIUM

315003 The \(\mathrm{pH}\) of a solution obtained be mixing equal volume of \(\frac{{\text{N}}}{{{\text{10}}}}{\text{ NaOH}}\,\,{\text{and }}\frac{{\text{N}}}{{20}}{\text{HCl}}\) is

1 13.4
2 12.4
3 7.6
4 1.6
CHXI07:EQUILIBRIUM

315004 \({\text{30 cc of }}\frac{{\text{M}}}{{\text{3}}}{\text{ HCl, 20 cc of }}{\mkern 1mu} \frac{{\text{M}}}{{\text{2}}}{\text{ HN}}{{\text{O}}_{\text{3}}}\) and \({\text{40}}\,\,{\text{cc}}\) of \(\dfrac{\mathrm{M}}{4} \mathrm{NaOH}\) solutions are mixed and the volume was made up to \({\text{1}}\,\,{\text{d}}{{\text{m}}^{\text{3}}}\). The \(\mathrm{pH}\) of the resulting solution is

1 2
2 1
3 3
4 8
CHXI07:EQUILIBRIUM

315001 Which of the following solutions will have \(\mathrm{pH}\) close to 1.0 ?

1 \({\text{100 ml of}}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 100 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
2 \({\text{50 ml of}}\,\,\frac{{\text{M}}}{{{\text{10}}}}{\text{HCl + 45 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
3 \({\text{10 ml of}}\,\,\frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 90 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
4 \({\text{75 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ HCl + 25 ml of }}\frac{{\text{M}}}{{{\text{10}}}}{\text{ NaOH}}\)
CHXI07:EQUILIBRIUM

315002 What is \(\left[\mathrm{H}^{+}\right]\) of a solution having \({\rm{0}}{\rm{.1}}\,{\rm{M}}\,{\rm{HCN}}\) and \({\rm{0}}{\rm{.2}}\,{\rm{M}}\,{\rm{NaCN?}}\) \({\rm{(}}{{\rm{K}}_{\rm{a}}}\,{\rm{for}}\,\left. {{\rm{HCN}} = {\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}} \right)\)

1 \({\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{10}}}}\)
2 \({\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{\rm{5}}}\)
3 \({\rm{6}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}\)
4 \({\rm{3}}{\rm{.1 \times 1}}{{\rm{0}}^{{\rm{ - 10}}}}\)
CHXI07:EQUILIBRIUM

315003 The \(\mathrm{pH}\) of a solution obtained be mixing equal volume of \(\frac{{\text{N}}}{{{\text{10}}}}{\text{ NaOH}}\,\,{\text{and }}\frac{{\text{N}}}{{20}}{\text{HCl}}\) is

1 13.4
2 12.4
3 7.6
4 1.6
CHXI07:EQUILIBRIUM

315004 \({\text{30 cc of }}\frac{{\text{M}}}{{\text{3}}}{\text{ HCl, 20 cc of }}{\mkern 1mu} \frac{{\text{M}}}{{\text{2}}}{\text{ HN}}{{\text{O}}_{\text{3}}}\) and \({\text{40}}\,\,{\text{cc}}\) of \(\dfrac{\mathrm{M}}{4} \mathrm{NaOH}\) solutions are mixed and the volume was made up to \({\text{1}}\,\,{\text{d}}{{\text{m}}^{\text{3}}}\). The \(\mathrm{pH}\) of the resulting solution is

1 2
2 1
3 3
4 8