Solubility Equilibria of Sparingly Soluble Salts
CHXI07:EQUILIBRIUM

314975 The solubility of \(\mathrm{BaSO}_{4}\) in water is \(2.42 \times 10^{-3} \mathrm{gL}^{-1}\) at \(298 \mathrm{~K}\). The value of its solubility product \(\left( {{{\text{K}}_{{\text{sp}}}}} \right)\) will be

1 \(1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
2 \(1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
3 \(1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
4 \(1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
CHXI07:EQUILIBRIUM

314976 Solubility product of \(\mathrm{AgBr}\) is \(4.9 \times 10^{-13}\). What is its solubility?

1 \(2.4 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
2 \(3.2 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
3 \(4.9 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
4 \(7.0 \times 10^{-7} \mathrm{moldm}^{-3}\)
CHXI07:EQUILIBRIUM

314977 The solubility of sparingly soluble salt \(\mathrm{AB}_{2}\) is \(1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\). What is it's solubility product?

1 \(2 \times 10^{-12}\)
2 \(4 \times 10^{-8}\)
3 \(4 \times 10^{-12}\)
4 \(2 \times 10^{-8}\)
CHXI07:EQUILIBRIUM

314978 Solubility of \(\mathrm{AgCl}\) is \(7.2 \times 10^{-7} \mathrm{moldm}^{-3}\). What is it's solubility product?

1 \(3.6 \times 10^{-13}\)
2 \(7.2 \times 10^{-14}\)
3 \(2.59 \times 10^{-14}\)
4 \(5.18 \times 10^{-13}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
CHXI07:EQUILIBRIUM

314975 The solubility of \(\mathrm{BaSO}_{4}\) in water is \(2.42 \times 10^{-3} \mathrm{gL}^{-1}\) at \(298 \mathrm{~K}\). The value of its solubility product \(\left( {{{\text{K}}_{{\text{sp}}}}} \right)\) will be

1 \(1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
2 \(1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
3 \(1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
4 \(1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
CHXI07:EQUILIBRIUM

314976 Solubility product of \(\mathrm{AgBr}\) is \(4.9 \times 10^{-13}\). What is its solubility?

1 \(2.4 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
2 \(3.2 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
3 \(4.9 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
4 \(7.0 \times 10^{-7} \mathrm{moldm}^{-3}\)
CHXI07:EQUILIBRIUM

314977 The solubility of sparingly soluble salt \(\mathrm{AB}_{2}\) is \(1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\). What is it's solubility product?

1 \(2 \times 10^{-12}\)
2 \(4 \times 10^{-8}\)
3 \(4 \times 10^{-12}\)
4 \(2 \times 10^{-8}\)
CHXI07:EQUILIBRIUM

314978 Solubility of \(\mathrm{AgCl}\) is \(7.2 \times 10^{-7} \mathrm{moldm}^{-3}\). What is it's solubility product?

1 \(3.6 \times 10^{-13}\)
2 \(7.2 \times 10^{-14}\)
3 \(2.59 \times 10^{-14}\)
4 \(5.18 \times 10^{-13}\)
CHXI07:EQUILIBRIUM

314975 The solubility of \(\mathrm{BaSO}_{4}\) in water is \(2.42 \times 10^{-3} \mathrm{gL}^{-1}\) at \(298 \mathrm{~K}\). The value of its solubility product \(\left( {{{\text{K}}_{{\text{sp}}}}} \right)\) will be

1 \(1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
2 \(1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
3 \(1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
4 \(1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
CHXI07:EQUILIBRIUM

314976 Solubility product of \(\mathrm{AgBr}\) is \(4.9 \times 10^{-13}\). What is its solubility?

1 \(2.4 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
2 \(3.2 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
3 \(4.9 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
4 \(7.0 \times 10^{-7} \mathrm{moldm}^{-3}\)
CHXI07:EQUILIBRIUM

314977 The solubility of sparingly soluble salt \(\mathrm{AB}_{2}\) is \(1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\). What is it's solubility product?

1 \(2 \times 10^{-12}\)
2 \(4 \times 10^{-8}\)
3 \(4 \times 10^{-12}\)
4 \(2 \times 10^{-8}\)
CHXI07:EQUILIBRIUM

314978 Solubility of \(\mathrm{AgCl}\) is \(7.2 \times 10^{-7} \mathrm{moldm}^{-3}\). What is it's solubility product?

1 \(3.6 \times 10^{-13}\)
2 \(7.2 \times 10^{-14}\)
3 \(2.59 \times 10^{-14}\)
4 \(5.18 \times 10^{-13}\)
CHXI07:EQUILIBRIUM

314975 The solubility of \(\mathrm{BaSO}_{4}\) in water is \(2.42 \times 10^{-3} \mathrm{gL}^{-1}\) at \(298 \mathrm{~K}\). The value of its solubility product \(\left( {{{\text{K}}_{{\text{sp}}}}} \right)\) will be

1 \(1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
2 \(1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
3 \(1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
4 \(1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\)
CHXI07:EQUILIBRIUM

314976 Solubility product of \(\mathrm{AgBr}\) is \(4.9 \times 10^{-13}\). What is its solubility?

1 \(2.4 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
2 \(3.2 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
3 \(4.9 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
4 \(7.0 \times 10^{-7} \mathrm{moldm}^{-3}\)
CHXI07:EQUILIBRIUM

314977 The solubility of sparingly soluble salt \(\mathrm{AB}_{2}\) is \(1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\). What is it's solubility product?

1 \(2 \times 10^{-12}\)
2 \(4 \times 10^{-8}\)
3 \(4 \times 10^{-12}\)
4 \(2 \times 10^{-8}\)
CHXI07:EQUILIBRIUM

314978 Solubility of \(\mathrm{AgCl}\) is \(7.2 \times 10^{-7} \mathrm{moldm}^{-3}\). What is it's solubility product?

1 \(3.6 \times 10^{-13}\)
2 \(7.2 \times 10^{-14}\)
3 \(2.59 \times 10^{-14}\)
4 \(5.18 \times 10^{-13}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here