314894 An aqueous solution contains an unknown concentration of \(\mathrm{Ba}^{2+}\). When \({\text{50}}\,\,{\text{ml}}\) of a \({\text{1}}\,\,{\text{M}}\) solution of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is added, \(\mathrm{BaSO}_{4}\) just begins to precipitate. The final volume is \(500 \mathrm{~mL}\). The solubility product of \(\mathrm{BaSO}_{4}\) is \(1 \times 10^{-10}\). What is the original concentration of \(\mathrm{Ba}^{2+}\) ?
314896 The mass of \(\mathrm{Pb}^{2+}\) ion is left in solution when \({\text{50}}\,\,{\text{mL}}{\mkern 1mu} \,{\mkern 1mu} {\text{of}}\,{\mkern 1mu} {\text{0}}{\text{.2 mL }}{\mkern 1mu} {\text{of }}{\mkern 1mu} {\text{0}}{\text{.2 M}}{\mkern 1mu} {\mkern 1mu} \,{\text{Pb(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\) is added to \({\text{50}}\,\,{\text{mL}}\) of 1.5 M NaCl is (Given \({{\text{K}}_{{\text{SP}}}}\) for \({\text{PbC}}{{\text{l}}_{\text{2}}}\)=\({\text{1}}{\text{.7}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}{{\text{M}}^{{\text{3 - }}}}\)
314894 An aqueous solution contains an unknown concentration of \(\mathrm{Ba}^{2+}\). When \({\text{50}}\,\,{\text{ml}}\) of a \({\text{1}}\,\,{\text{M}}\) solution of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is added, \(\mathrm{BaSO}_{4}\) just begins to precipitate. The final volume is \(500 \mathrm{~mL}\). The solubility product of \(\mathrm{BaSO}_{4}\) is \(1 \times 10^{-10}\). What is the original concentration of \(\mathrm{Ba}^{2+}\) ?
314896 The mass of \(\mathrm{Pb}^{2+}\) ion is left in solution when \({\text{50}}\,\,{\text{mL}}{\mkern 1mu} \,{\mkern 1mu} {\text{of}}\,{\mkern 1mu} {\text{0}}{\text{.2 mL }}{\mkern 1mu} {\text{of }}{\mkern 1mu} {\text{0}}{\text{.2 M}}{\mkern 1mu} {\mkern 1mu} \,{\text{Pb(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\) is added to \({\text{50}}\,\,{\text{mL}}\) of 1.5 M NaCl is (Given \({{\text{K}}_{{\text{SP}}}}\) for \({\text{PbC}}{{\text{l}}_{\text{2}}}\)=\({\text{1}}{\text{.7}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}{{\text{M}}^{{\text{3 - }}}}\)
314894 An aqueous solution contains an unknown concentration of \(\mathrm{Ba}^{2+}\). When \({\text{50}}\,\,{\text{ml}}\) of a \({\text{1}}\,\,{\text{M}}\) solution of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is added, \(\mathrm{BaSO}_{4}\) just begins to precipitate. The final volume is \(500 \mathrm{~mL}\). The solubility product of \(\mathrm{BaSO}_{4}\) is \(1 \times 10^{-10}\). What is the original concentration of \(\mathrm{Ba}^{2+}\) ?
314896 The mass of \(\mathrm{Pb}^{2+}\) ion is left in solution when \({\text{50}}\,\,{\text{mL}}{\mkern 1mu} \,{\mkern 1mu} {\text{of}}\,{\mkern 1mu} {\text{0}}{\text{.2 mL }}{\mkern 1mu} {\text{of }}{\mkern 1mu} {\text{0}}{\text{.2 M}}{\mkern 1mu} {\mkern 1mu} \,{\text{Pb(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\) is added to \({\text{50}}\,\,{\text{mL}}\) of 1.5 M NaCl is (Given \({{\text{K}}_{{\text{SP}}}}\) for \({\text{PbC}}{{\text{l}}_{\text{2}}}\)=\({\text{1}}{\text{.7}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}{{\text{M}}^{{\text{3 - }}}}\)
314894 An aqueous solution contains an unknown concentration of \(\mathrm{Ba}^{2+}\). When \({\text{50}}\,\,{\text{ml}}\) of a \({\text{1}}\,\,{\text{M}}\) solution of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is added, \(\mathrm{BaSO}_{4}\) just begins to precipitate. The final volume is \(500 \mathrm{~mL}\). The solubility product of \(\mathrm{BaSO}_{4}\) is \(1 \times 10^{-10}\). What is the original concentration of \(\mathrm{Ba}^{2+}\) ?
314896 The mass of \(\mathrm{Pb}^{2+}\) ion is left in solution when \({\text{50}}\,\,{\text{mL}}{\mkern 1mu} \,{\mkern 1mu} {\text{of}}\,{\mkern 1mu} {\text{0}}{\text{.2 mL }}{\mkern 1mu} {\text{of }}{\mkern 1mu} {\text{0}}{\text{.2 M}}{\mkern 1mu} {\mkern 1mu} \,{\text{Pb(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\) is added to \({\text{50}}\,\,{\text{mL}}\) of 1.5 M NaCl is (Given \({{\text{K}}_{{\text{SP}}}}\) for \({\text{PbC}}{{\text{l}}_{\text{2}}}\)=\({\text{1}}{\text{.7}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}{{\text{M}}^{{\text{3 - }}}}\)