Solubility Equilibria of Sparingly Soluble Salts
CHXI07:EQUILIBRIUM

314894 An aqueous solution contains an unknown concentration of \(\mathrm{Ba}^{2+}\). When \({\text{50}}\,\,{\text{ml}}\) of a \({\text{1}}\,\,{\text{M}}\) solution of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is added, \(\mathrm{BaSO}_{4}\) just begins to precipitate. The final volume is \(500 \mathrm{~mL}\). The solubility product of \(\mathrm{BaSO}_{4}\) is \(1 \times 10^{-10}\). What is the original concentration of \(\mathrm{Ba}^{2+}\) ?

1 \({\text{2}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
2 \({\text{1}}{\text{.1}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
3 \({\text{1}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}{\text{ M}}\)
4 \({\text{5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314895 When equal volumes of the following solutions are mixed, precipitation of \({\text{AgCl }}\left( {{{\text{K}}_{{\text{sp}}}} = 1.8 \times {{10}^{ - 10}}} \right){\text{ }}\) will only with

1 \({\text{1}}{{\text{0}}^{{\text{ - 4}}}}{\text{ M}}{\mkern 1mu} {\mkern 1mu} {\text{A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 4}}}}{\text{ M C}}{{\text{l}}^{\text{ - }}}\)
2 \({\text{1}}{{\text{0}}^{{\text{ - 6}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\text{and 1}}{{\text{0}}^{{\text{ - 6}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
3 \({\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 7}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
4 \({\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
CHXI07:EQUILIBRIUM

314896 The mass of \(\mathrm{Pb}^{2+}\) ion is left in solution when \({\text{50}}\,\,{\text{mL}}{\mkern 1mu} \,{\mkern 1mu} {\text{of}}\,{\mkern 1mu} {\text{0}}{\text{.2 mL }}{\mkern 1mu} {\text{of }}{\mkern 1mu} {\text{0}}{\text{.2 M}}{\mkern 1mu} {\mkern 1mu} \,{\text{Pb(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\) is added to \({\text{50}}\,\,{\text{mL}}\) of 1.5 M NaCl is (Given \({{\text{K}}_{{\text{SP}}}}\) for \({\text{PbC}}{{\text{l}}_{\text{2}}}\)=\({\text{1}}{\text{.7}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}{{\text{M}}^{{\text{3 - }}}}\)

1 \(12 \mathrm{~g}\)
2 \({\text{12}}\,\,{\text{mg}}\)
3 \(120 \mathrm{~g}\)
4 \({\text{120}}\,\,{\text{mg}}\)
CHXI07:EQUILIBRIUM

314897 In the third group of qualitative analysis, the precipitating reagent is \(\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}\). The function of \(\mathrm{NH}_{4} \mathrm{Cl}\) is to

1 Increase the ionization of \(\mathrm{NH}_{4} \mathrm{OH}\)
2 Supress the ionization of \(\mathrm{NH}_{4} \mathrm{OH}\)
3 Stabilise the hydroxides of group cations
4 Convert the ions of group III into their respective chlorides
CHXI07:EQUILIBRIUM

314894 An aqueous solution contains an unknown concentration of \(\mathrm{Ba}^{2+}\). When \({\text{50}}\,\,{\text{ml}}\) of a \({\text{1}}\,\,{\text{M}}\) solution of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is added, \(\mathrm{BaSO}_{4}\) just begins to precipitate. The final volume is \(500 \mathrm{~mL}\). The solubility product of \(\mathrm{BaSO}_{4}\) is \(1 \times 10^{-10}\). What is the original concentration of \(\mathrm{Ba}^{2+}\) ?

1 \({\text{2}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
2 \({\text{1}}{\text{.1}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
3 \({\text{1}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}{\text{ M}}\)
4 \({\text{5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314895 When equal volumes of the following solutions are mixed, precipitation of \({\text{AgCl }}\left( {{{\text{K}}_{{\text{sp}}}} = 1.8 \times {{10}^{ - 10}}} \right){\text{ }}\) will only with

1 \({\text{1}}{{\text{0}}^{{\text{ - 4}}}}{\text{ M}}{\mkern 1mu} {\mkern 1mu} {\text{A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 4}}}}{\text{ M C}}{{\text{l}}^{\text{ - }}}\)
2 \({\text{1}}{{\text{0}}^{{\text{ - 6}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\text{and 1}}{{\text{0}}^{{\text{ - 6}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
3 \({\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 7}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
4 \({\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
CHXI07:EQUILIBRIUM

314896 The mass of \(\mathrm{Pb}^{2+}\) ion is left in solution when \({\text{50}}\,\,{\text{mL}}{\mkern 1mu} \,{\mkern 1mu} {\text{of}}\,{\mkern 1mu} {\text{0}}{\text{.2 mL }}{\mkern 1mu} {\text{of }}{\mkern 1mu} {\text{0}}{\text{.2 M}}{\mkern 1mu} {\mkern 1mu} \,{\text{Pb(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\) is added to \({\text{50}}\,\,{\text{mL}}\) of 1.5 M NaCl is (Given \({{\text{K}}_{{\text{SP}}}}\) for \({\text{PbC}}{{\text{l}}_{\text{2}}}\)=\({\text{1}}{\text{.7}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}{{\text{M}}^{{\text{3 - }}}}\)

1 \(12 \mathrm{~g}\)
2 \({\text{12}}\,\,{\text{mg}}\)
3 \(120 \mathrm{~g}\)
4 \({\text{120}}\,\,{\text{mg}}\)
CHXI07:EQUILIBRIUM

314897 In the third group of qualitative analysis, the precipitating reagent is \(\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}\). The function of \(\mathrm{NH}_{4} \mathrm{Cl}\) is to

1 Increase the ionization of \(\mathrm{NH}_{4} \mathrm{OH}\)
2 Supress the ionization of \(\mathrm{NH}_{4} \mathrm{OH}\)
3 Stabilise the hydroxides of group cations
4 Convert the ions of group III into their respective chlorides
CHXI07:EQUILIBRIUM

314894 An aqueous solution contains an unknown concentration of \(\mathrm{Ba}^{2+}\). When \({\text{50}}\,\,{\text{ml}}\) of a \({\text{1}}\,\,{\text{M}}\) solution of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is added, \(\mathrm{BaSO}_{4}\) just begins to precipitate. The final volume is \(500 \mathrm{~mL}\). The solubility product of \(\mathrm{BaSO}_{4}\) is \(1 \times 10^{-10}\). What is the original concentration of \(\mathrm{Ba}^{2+}\) ?

1 \({\text{2}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
2 \({\text{1}}{\text{.1}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
3 \({\text{1}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}{\text{ M}}\)
4 \({\text{5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314895 When equal volumes of the following solutions are mixed, precipitation of \({\text{AgCl }}\left( {{{\text{K}}_{{\text{sp}}}} = 1.8 \times {{10}^{ - 10}}} \right){\text{ }}\) will only with

1 \({\text{1}}{{\text{0}}^{{\text{ - 4}}}}{\text{ M}}{\mkern 1mu} {\mkern 1mu} {\text{A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 4}}}}{\text{ M C}}{{\text{l}}^{\text{ - }}}\)
2 \({\text{1}}{{\text{0}}^{{\text{ - 6}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\text{and 1}}{{\text{0}}^{{\text{ - 6}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
3 \({\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 7}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
4 \({\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
CHXI07:EQUILIBRIUM

314896 The mass of \(\mathrm{Pb}^{2+}\) ion is left in solution when \({\text{50}}\,\,{\text{mL}}{\mkern 1mu} \,{\mkern 1mu} {\text{of}}\,{\mkern 1mu} {\text{0}}{\text{.2 mL }}{\mkern 1mu} {\text{of }}{\mkern 1mu} {\text{0}}{\text{.2 M}}{\mkern 1mu} {\mkern 1mu} \,{\text{Pb(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\) is added to \({\text{50}}\,\,{\text{mL}}\) of 1.5 M NaCl is (Given \({{\text{K}}_{{\text{SP}}}}\) for \({\text{PbC}}{{\text{l}}_{\text{2}}}\)=\({\text{1}}{\text{.7}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}{{\text{M}}^{{\text{3 - }}}}\)

1 \(12 \mathrm{~g}\)
2 \({\text{12}}\,\,{\text{mg}}\)
3 \(120 \mathrm{~g}\)
4 \({\text{120}}\,\,{\text{mg}}\)
CHXI07:EQUILIBRIUM

314897 In the third group of qualitative analysis, the precipitating reagent is \(\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}\). The function of \(\mathrm{NH}_{4} \mathrm{Cl}\) is to

1 Increase the ionization of \(\mathrm{NH}_{4} \mathrm{OH}\)
2 Supress the ionization of \(\mathrm{NH}_{4} \mathrm{OH}\)
3 Stabilise the hydroxides of group cations
4 Convert the ions of group III into their respective chlorides
CHXI07:EQUILIBRIUM

314894 An aqueous solution contains an unknown concentration of \(\mathrm{Ba}^{2+}\). When \({\text{50}}\,\,{\text{ml}}\) of a \({\text{1}}\,\,{\text{M}}\) solution of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is added, \(\mathrm{BaSO}_{4}\) just begins to precipitate. The final volume is \(500 \mathrm{~mL}\). The solubility product of \(\mathrm{BaSO}_{4}\) is \(1 \times 10^{-10}\). What is the original concentration of \(\mathrm{Ba}^{2+}\) ?

1 \({\text{2}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
2 \({\text{1}}{\text{.1}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
3 \({\text{1}}{\text{.0}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}{\text{ M}}\)
4 \({\text{5}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314895 When equal volumes of the following solutions are mixed, precipitation of \({\text{AgCl }}\left( {{{\text{K}}_{{\text{sp}}}} = 1.8 \times {{10}^{ - 10}}} \right){\text{ }}\) will only with

1 \({\text{1}}{{\text{0}}^{{\text{ - 4}}}}{\text{ M}}{\mkern 1mu} {\mkern 1mu} {\text{A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 4}}}}{\text{ M C}}{{\text{l}}^{\text{ - }}}\)
2 \({\text{1}}{{\text{0}}^{{\text{ - 6}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\text{and 1}}{{\text{0}}^{{\text{ - 6}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
3 \({\text{1}}{{\text{0}}^{{\text{ - 7}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 7}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
4 \({\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M A}}{{\text{g}}^{\text{ + }}}{\mkern 1mu} {\text{and 1}}{{\text{0}}^{{\text{ - 5}}}}{\text{M C}}{{\text{l}}^{\text{ - }}}\)
CHXI07:EQUILIBRIUM

314896 The mass of \(\mathrm{Pb}^{2+}\) ion is left in solution when \({\text{50}}\,\,{\text{mL}}{\mkern 1mu} \,{\mkern 1mu} {\text{of}}\,{\mkern 1mu} {\text{0}}{\text{.2 mL }}{\mkern 1mu} {\text{of }}{\mkern 1mu} {\text{0}}{\text{.2 M}}{\mkern 1mu} {\mkern 1mu} \,{\text{Pb(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{2}}}\) is added to \({\text{50}}\,\,{\text{mL}}\) of 1.5 M NaCl is (Given \({{\text{K}}_{{\text{SP}}}}\) for \({\text{PbC}}{{\text{l}}_{\text{2}}}\)=\({\text{1}}{\text{.7}} \times {\text{1}}{{\text{0}}^{{\text{ - 4}}}}{{\text{M}}^{{\text{3 - }}}}\)

1 \(12 \mathrm{~g}\)
2 \({\text{12}}\,\,{\text{mg}}\)
3 \(120 \mathrm{~g}\)
4 \({\text{120}}\,\,{\text{mg}}\)
CHXI07:EQUILIBRIUM

314897 In the third group of qualitative analysis, the precipitating reagent is \(\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}\). The function of \(\mathrm{NH}_{4} \mathrm{Cl}\) is to

1 Increase the ionization of \(\mathrm{NH}_{4} \mathrm{OH}\)
2 Supress the ionization of \(\mathrm{NH}_{4} \mathrm{OH}\)
3 Stabilise the hydroxides of group cations
4 Convert the ions of group III into their respective chlorides