Solubility Equilibria of Sparingly Soluble Salts
CHXI07:EQUILIBRIUM

314889 Assertion :
In the third group of qualitative analysis, \(\mathrm{NH}_{4} \mathrm{Cl}\) is added to \(\mathrm{NH}_{4} \mathrm{OH}\) medium.
Reason :
This is to convert the ions of group into their respective chlorides.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXI07:EQUILIBRIUM

314890 The \({{\rm{K}}_{{\rm{sp}}}}\) of \(\mathrm{Mg}(\mathrm{OH})_{2}\) is \(1 \times 10^{-12} .0 .01 \mathrm{Mg}(\mathrm{OH})_{2}\) will precipitate at the limited \(\mathrm{pH}\)

1 3
2 9
3 5
4 8
CHXI07:EQUILIBRIUM

314891 Find out the solubility of \(\mathrm{Ni}(\mathrm{OH})_{2}\) in \({\text{0}}{\text{.1}}\,\,{\text{M}}\) \({\text{NaOH}}\). Given that the ionic product of \(\mathrm{Ni}(\mathrm{OH})_{2}\) is \(2 \times 10^{-15}\)

1 \(2 \times {10^{ - 8}}{\text{ M}}\)
2 \({\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}{\mkern 1mu} {\text{M}}\)
3 \(1 \times {10^8}{\text{ M}}\)
4 \(2 \times {10^{ - 13}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314892 An aqueous solution of metal chloride \({\mathrm{\mathrm{MCl}_{2}(0.05 \mathrm{M})}}\) is saturated with \({\mathrm{\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})}}\). The minimum pH at which metal sulphide will be precipitated is ____ .
\[\begin{array}{*{20}{l}}
{({{\rm{K}}_{{\rm{sp}}}}{\rm{MS}}\, = 5 \times {{10}^{ - 21}},{{\rm{K}}_{\rm{1}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^7},}\\
{{\mkern 1mu} {{\rm{K}}_{\rm{2}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^{ - 14}}).}
\end{array}\]

1 5
2 1
3 3
4 7
CHXI07:EQUILIBRIUM

314893 The concentration of \(\mathrm{Ag}^{+}\)ion in a given saturated solution of \(\mathrm{AgCl}\) at \(25^{\circ} \mathrm{C}\) is \(1.06 \times 10^{-5} \mathrm{~g}\) ion per litre. Thus, the solubility product of \(\mathrm{AgCl}\) is

1 \(0.353 \times 10^{-10}\)
2 \(0.530 \times 10^{-10}\)
3 \(1.12 \times 10^{-10}\)
4 \(2.12 \times 10^{-10}\)
CHXI07:EQUILIBRIUM

314889 Assertion :
In the third group of qualitative analysis, \(\mathrm{NH}_{4} \mathrm{Cl}\) is added to \(\mathrm{NH}_{4} \mathrm{OH}\) medium.
Reason :
This is to convert the ions of group into their respective chlorides.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXI07:EQUILIBRIUM

314890 The \({{\rm{K}}_{{\rm{sp}}}}\) of \(\mathrm{Mg}(\mathrm{OH})_{2}\) is \(1 \times 10^{-12} .0 .01 \mathrm{Mg}(\mathrm{OH})_{2}\) will precipitate at the limited \(\mathrm{pH}\)

1 3
2 9
3 5
4 8
CHXI07:EQUILIBRIUM

314891 Find out the solubility of \(\mathrm{Ni}(\mathrm{OH})_{2}\) in \({\text{0}}{\text{.1}}\,\,{\text{M}}\) \({\text{NaOH}}\). Given that the ionic product of \(\mathrm{Ni}(\mathrm{OH})_{2}\) is \(2 \times 10^{-15}\)

1 \(2 \times {10^{ - 8}}{\text{ M}}\)
2 \({\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}{\mkern 1mu} {\text{M}}\)
3 \(1 \times {10^8}{\text{ M}}\)
4 \(2 \times {10^{ - 13}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314892 An aqueous solution of metal chloride \({\mathrm{\mathrm{MCl}_{2}(0.05 \mathrm{M})}}\) is saturated with \({\mathrm{\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})}}\). The minimum pH at which metal sulphide will be precipitated is ____ .
\[\begin{array}{*{20}{l}}
{({{\rm{K}}_{{\rm{sp}}}}{\rm{MS}}\, = 5 \times {{10}^{ - 21}},{{\rm{K}}_{\rm{1}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^7},}\\
{{\mkern 1mu} {{\rm{K}}_{\rm{2}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^{ - 14}}).}
\end{array}\]

1 5
2 1
3 3
4 7
CHXI07:EQUILIBRIUM

314893 The concentration of \(\mathrm{Ag}^{+}\)ion in a given saturated solution of \(\mathrm{AgCl}\) at \(25^{\circ} \mathrm{C}\) is \(1.06 \times 10^{-5} \mathrm{~g}\) ion per litre. Thus, the solubility product of \(\mathrm{AgCl}\) is

1 \(0.353 \times 10^{-10}\)
2 \(0.530 \times 10^{-10}\)
3 \(1.12 \times 10^{-10}\)
4 \(2.12 \times 10^{-10}\)
CHXI07:EQUILIBRIUM

314889 Assertion :
In the third group of qualitative analysis, \(\mathrm{NH}_{4} \mathrm{Cl}\) is added to \(\mathrm{NH}_{4} \mathrm{OH}\) medium.
Reason :
This is to convert the ions of group into their respective chlorides.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXI07:EQUILIBRIUM

314890 The \({{\rm{K}}_{{\rm{sp}}}}\) of \(\mathrm{Mg}(\mathrm{OH})_{2}\) is \(1 \times 10^{-12} .0 .01 \mathrm{Mg}(\mathrm{OH})_{2}\) will precipitate at the limited \(\mathrm{pH}\)

1 3
2 9
3 5
4 8
CHXI07:EQUILIBRIUM

314891 Find out the solubility of \(\mathrm{Ni}(\mathrm{OH})_{2}\) in \({\text{0}}{\text{.1}}\,\,{\text{M}}\) \({\text{NaOH}}\). Given that the ionic product of \(\mathrm{Ni}(\mathrm{OH})_{2}\) is \(2 \times 10^{-15}\)

1 \(2 \times {10^{ - 8}}{\text{ M}}\)
2 \({\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}{\mkern 1mu} {\text{M}}\)
3 \(1 \times {10^8}{\text{ M}}\)
4 \(2 \times {10^{ - 13}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314892 An aqueous solution of metal chloride \({\mathrm{\mathrm{MCl}_{2}(0.05 \mathrm{M})}}\) is saturated with \({\mathrm{\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})}}\). The minimum pH at which metal sulphide will be precipitated is ____ .
\[\begin{array}{*{20}{l}}
{({{\rm{K}}_{{\rm{sp}}}}{\rm{MS}}\, = 5 \times {{10}^{ - 21}},{{\rm{K}}_{\rm{1}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^7},}\\
{{\mkern 1mu} {{\rm{K}}_{\rm{2}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^{ - 14}}).}
\end{array}\]

1 5
2 1
3 3
4 7
CHXI07:EQUILIBRIUM

314893 The concentration of \(\mathrm{Ag}^{+}\)ion in a given saturated solution of \(\mathrm{AgCl}\) at \(25^{\circ} \mathrm{C}\) is \(1.06 \times 10^{-5} \mathrm{~g}\) ion per litre. Thus, the solubility product of \(\mathrm{AgCl}\) is

1 \(0.353 \times 10^{-10}\)
2 \(0.530 \times 10^{-10}\)
3 \(1.12 \times 10^{-10}\)
4 \(2.12 \times 10^{-10}\)
CHXI07:EQUILIBRIUM

314889 Assertion :
In the third group of qualitative analysis, \(\mathrm{NH}_{4} \mathrm{Cl}\) is added to \(\mathrm{NH}_{4} \mathrm{OH}\) medium.
Reason :
This is to convert the ions of group into their respective chlorides.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXI07:EQUILIBRIUM

314890 The \({{\rm{K}}_{{\rm{sp}}}}\) of \(\mathrm{Mg}(\mathrm{OH})_{2}\) is \(1 \times 10^{-12} .0 .01 \mathrm{Mg}(\mathrm{OH})_{2}\) will precipitate at the limited \(\mathrm{pH}\)

1 3
2 9
3 5
4 8
CHXI07:EQUILIBRIUM

314891 Find out the solubility of \(\mathrm{Ni}(\mathrm{OH})_{2}\) in \({\text{0}}{\text{.1}}\,\,{\text{M}}\) \({\text{NaOH}}\). Given that the ionic product of \(\mathrm{Ni}(\mathrm{OH})_{2}\) is \(2 \times 10^{-15}\)

1 \(2 \times {10^{ - 8}}{\text{ M}}\)
2 \({\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}{\mkern 1mu} {\text{M}}\)
3 \(1 \times {10^8}{\text{ M}}\)
4 \(2 \times {10^{ - 13}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314892 An aqueous solution of metal chloride \({\mathrm{\mathrm{MCl}_{2}(0.05 \mathrm{M})}}\) is saturated with \({\mathrm{\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})}}\). The minimum pH at which metal sulphide will be precipitated is ____ .
\[\begin{array}{*{20}{l}}
{({{\rm{K}}_{{\rm{sp}}}}{\rm{MS}}\, = 5 \times {{10}^{ - 21}},{{\rm{K}}_{\rm{1}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^7},}\\
{{\mkern 1mu} {{\rm{K}}_{\rm{2}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^{ - 14}}).}
\end{array}\]

1 5
2 1
3 3
4 7
CHXI07:EQUILIBRIUM

314893 The concentration of \(\mathrm{Ag}^{+}\)ion in a given saturated solution of \(\mathrm{AgCl}\) at \(25^{\circ} \mathrm{C}\) is \(1.06 \times 10^{-5} \mathrm{~g}\) ion per litre. Thus, the solubility product of \(\mathrm{AgCl}\) is

1 \(0.353 \times 10^{-10}\)
2 \(0.530 \times 10^{-10}\)
3 \(1.12 \times 10^{-10}\)
4 \(2.12 \times 10^{-10}\)
CHXI07:EQUILIBRIUM

314889 Assertion :
In the third group of qualitative analysis, \(\mathrm{NH}_{4} \mathrm{Cl}\) is added to \(\mathrm{NH}_{4} \mathrm{OH}\) medium.
Reason :
This is to convert the ions of group into their respective chlorides.

1 Both Assertion and Reason are correct and Reason is the correct explanation of the Assertion.
2 Both Assertion and Reason are correct but Reason is not the correct explanation of the Assertion.
3 Assertion is correct but Reason is incorrect.
4 Assertion is incorrect but Reason is correct.
CHXI07:EQUILIBRIUM

314890 The \({{\rm{K}}_{{\rm{sp}}}}\) of \(\mathrm{Mg}(\mathrm{OH})_{2}\) is \(1 \times 10^{-12} .0 .01 \mathrm{Mg}(\mathrm{OH})_{2}\) will precipitate at the limited \(\mathrm{pH}\)

1 3
2 9
3 5
4 8
CHXI07:EQUILIBRIUM

314891 Find out the solubility of \(\mathrm{Ni}(\mathrm{OH})_{2}\) in \({\text{0}}{\text{.1}}\,\,{\text{M}}\) \({\text{NaOH}}\). Given that the ionic product of \(\mathrm{Ni}(\mathrm{OH})_{2}\) is \(2 \times 10^{-15}\)

1 \(2 \times {10^{ - 8}}{\text{ M}}\)
2 \({\text{1}} \times {\text{1}}{{\text{0}}^{{\text{ - 13}}}}{\mkern 1mu} {\text{M}}\)
3 \(1 \times {10^8}{\text{ M}}\)
4 \(2 \times {10^{ - 13}}{\text{ M}}\)
CHXI07:EQUILIBRIUM

314892 An aqueous solution of metal chloride \({\mathrm{\mathrm{MCl}_{2}(0.05 \mathrm{M})}}\) is saturated with \({\mathrm{\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})}}\). The minimum pH at which metal sulphide will be precipitated is ____ .
\[\begin{array}{*{20}{l}}
{({{\rm{K}}_{{\rm{sp}}}}{\rm{MS}}\, = 5 \times {{10}^{ - 21}},{{\rm{K}}_{\rm{1}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^7},}\\
{{\mkern 1mu} {{\rm{K}}_{\rm{2}}}({{\rm{H}}_{\rm{2}}}{\rm{S}}) = {{10}^{ - 14}}).}
\end{array}\]

1 5
2 1
3 3
4 7
CHXI07:EQUILIBRIUM

314893 The concentration of \(\mathrm{Ag}^{+}\)ion in a given saturated solution of \(\mathrm{AgCl}\) at \(25^{\circ} \mathrm{C}\) is \(1.06 \times 10^{-5} \mathrm{~g}\) ion per litre. Thus, the solubility product of \(\mathrm{AgCl}\) is

1 \(0.353 \times 10^{-10}\)
2 \(0.530 \times 10^{-10}\)
3 \(1.12 \times 10^{-10}\)
4 \(2.12 \times 10^{-10}\)