314457 For the equilibrium, \(2 \operatorname{NOBr}(\mathrm{g}) \rightleftharpoons\) \(2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}\), calculate the ratio \(\frac{{{{\rm{K}}_{\rm{p}}}}}{{\rm{P}}},\) where P is the total pressure given that \({{\rm{P}}_{{\rm{B}}{{\rm{r}}_{\rm{2}}}}} = \frac{{\rm{P}}}{9}\) at a certain temperature
314458 \({\text{4 g }}{{\text{H}}_{\text{2}}}\,{\text{& 127 g }}{{\text{I}}_{\text{2}}}\) are mixed & heated in 10 lit closed vessel until equilibrium is reached. If the equilibrium concentration of \(\mathrm{HI}\) is \({\text{0}}{\text{.05}}\,\,{\text{M}}\), total number of moles present at equilibrium is
314459 \(\mathrm{K}_{\mathrm{p}}\) value for \({\text{2S}}{{\text{O}}_{{\text{2}}\left( {\text{g}} \right)}}{\text{ + }}{{\text{O}}_{{\text{2}}\left( {\text{g}} \right)}} \rightleftharpoons {\text{2S}}{{\text{O}}_{{\text{3}}\left( {\text{g}} \right)}}\) is 5.0 \(\mathrm{atm}^{-1}\). What is the equilibrium partial pressure of \(\mathrm{O}_{2}\) if the equilibrium pressures of \(\mathrm{SO}_{2}\) and \(\mathrm{SO}_{3}\) are equal?
314457 For the equilibrium, \(2 \operatorname{NOBr}(\mathrm{g}) \rightleftharpoons\) \(2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}\), calculate the ratio \(\frac{{{{\rm{K}}_{\rm{p}}}}}{{\rm{P}}},\) where P is the total pressure given that \({{\rm{P}}_{{\rm{B}}{{\rm{r}}_{\rm{2}}}}} = \frac{{\rm{P}}}{9}\) at a certain temperature
314458 \({\text{4 g }}{{\text{H}}_{\text{2}}}\,{\text{& 127 g }}{{\text{I}}_{\text{2}}}\) are mixed & heated in 10 lit closed vessel until equilibrium is reached. If the equilibrium concentration of \(\mathrm{HI}\) is \({\text{0}}{\text{.05}}\,\,{\text{M}}\), total number of moles present at equilibrium is
314459 \(\mathrm{K}_{\mathrm{p}}\) value for \({\text{2S}}{{\text{O}}_{{\text{2}}\left( {\text{g}} \right)}}{\text{ + }}{{\text{O}}_{{\text{2}}\left( {\text{g}} \right)}} \rightleftharpoons {\text{2S}}{{\text{O}}_{{\text{3}}\left( {\text{g}} \right)}}\) is 5.0 \(\mathrm{atm}^{-1}\). What is the equilibrium partial pressure of \(\mathrm{O}_{2}\) if the equilibrium pressures of \(\mathrm{SO}_{2}\) and \(\mathrm{SO}_{3}\) are equal?
314457 For the equilibrium, \(2 \operatorname{NOBr}(\mathrm{g}) \rightleftharpoons\) \(2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}\), calculate the ratio \(\frac{{{{\rm{K}}_{\rm{p}}}}}{{\rm{P}}},\) where P is the total pressure given that \({{\rm{P}}_{{\rm{B}}{{\rm{r}}_{\rm{2}}}}} = \frac{{\rm{P}}}{9}\) at a certain temperature
314458 \({\text{4 g }}{{\text{H}}_{\text{2}}}\,{\text{& 127 g }}{{\text{I}}_{\text{2}}}\) are mixed & heated in 10 lit closed vessel until equilibrium is reached. If the equilibrium concentration of \(\mathrm{HI}\) is \({\text{0}}{\text{.05}}\,\,{\text{M}}\), total number of moles present at equilibrium is
314459 \(\mathrm{K}_{\mathrm{p}}\) value for \({\text{2S}}{{\text{O}}_{{\text{2}}\left( {\text{g}} \right)}}{\text{ + }}{{\text{O}}_{{\text{2}}\left( {\text{g}} \right)}} \rightleftharpoons {\text{2S}}{{\text{O}}_{{\text{3}}\left( {\text{g}} \right)}}\) is 5.0 \(\mathrm{atm}^{-1}\). What is the equilibrium partial pressure of \(\mathrm{O}_{2}\) if the equilibrium pressures of \(\mathrm{SO}_{2}\) and \(\mathrm{SO}_{3}\) are equal?
314457 For the equilibrium, \(2 \operatorname{NOBr}(\mathrm{g}) \rightleftharpoons\) \(2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}\), calculate the ratio \(\frac{{{{\rm{K}}_{\rm{p}}}}}{{\rm{P}}},\) where P is the total pressure given that \({{\rm{P}}_{{\rm{B}}{{\rm{r}}_{\rm{2}}}}} = \frac{{\rm{P}}}{9}\) at a certain temperature
314458 \({\text{4 g }}{{\text{H}}_{\text{2}}}\,{\text{& 127 g }}{{\text{I}}_{\text{2}}}\) are mixed & heated in 10 lit closed vessel until equilibrium is reached. If the equilibrium concentration of \(\mathrm{HI}\) is \({\text{0}}{\text{.05}}\,\,{\text{M}}\), total number of moles present at equilibrium is
314459 \(\mathrm{K}_{\mathrm{p}}\) value for \({\text{2S}}{{\text{O}}_{{\text{2}}\left( {\text{g}} \right)}}{\text{ + }}{{\text{O}}_{{\text{2}}\left( {\text{g}} \right)}} \rightleftharpoons {\text{2S}}{{\text{O}}_{{\text{3}}\left( {\text{g}} \right)}}\) is 5.0 \(\mathrm{atm}^{-1}\). What is the equilibrium partial pressure of \(\mathrm{O}_{2}\) if the equilibrium pressures of \(\mathrm{SO}_{2}\) and \(\mathrm{SO}_{3}\) are equal?