Acid – Base Titration Using Indicators
CHXI07:EQUILIBRIUM

314379 Read the Statement A and Statement B carefully and mark correct option.
Statement A :
In redox titration, the indicators used are sensitive to change in pH of the solution.
Statement B :
In acid-base titration, the indicators used are sensitive to change in oxidation potential.

1 Both Statement A and Statement B are incorrect.
2 Both Statement A and Statement B are correct.
3 Statement A is correct but Statement B is incorrect.
4 Statement A is incorrect but Statement B is correct.
CHXI07:EQUILIBRIUM

314380 The rapid changes of \(\mathrm{pH}\) near the stoichiometric point of an acid base titration is the basis of indicator detection. \(\mathrm{pH}\) of the solution is related to ratio of the concentrations of the conjugate acid \({\text{(HIn)}}\) and base ( \(\mathrm{In}^{-}\)) forms of the indicator given by the expression

1 \(\log \dfrac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}={\rm{p}}{{\rm{K}}_{{\rm{ln}}}}-\mathrm{pH}\)
2 \(\log \dfrac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}={\rm{p}}{{\rm{K}}_{{\rm{ln}}}}-\mathrm{pH}\)
3 \({\rm{log}}\frac{{[{\rm{HIn}}]}}{{\left[ {{\rm{I}}{{\rm{n}}^{\rm{ - }}}} \right]}} = {\rm{pH}} - {\rm{p}}{{\rm{K}}_{{\rm{ln}}}}\)
4 \({\rm{log}}\frac{{\left[ {{\rm{I}}{{\rm{n}}^{\rm{ - }}}} \right]}}{{{\rm{[HIn]}}}} = {\rm{pH}} - {\rm{p}}{{\rm{K}}_{{\rm{ln}}}}\)
CHXI07:EQUILIBRIUM

314379 Read the Statement A and Statement B carefully and mark correct option.
Statement A :
In redox titration, the indicators used are sensitive to change in pH of the solution.
Statement B :
In acid-base titration, the indicators used are sensitive to change in oxidation potential.

1 Both Statement A and Statement B are incorrect.
2 Both Statement A and Statement B are correct.
3 Statement A is correct but Statement B is incorrect.
4 Statement A is incorrect but Statement B is correct.
CHXI07:EQUILIBRIUM

314380 The rapid changes of \(\mathrm{pH}\) near the stoichiometric point of an acid base titration is the basis of indicator detection. \(\mathrm{pH}\) of the solution is related to ratio of the concentrations of the conjugate acid \({\text{(HIn)}}\) and base ( \(\mathrm{In}^{-}\)) forms of the indicator given by the expression

1 \(\log \dfrac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}={\rm{p}}{{\rm{K}}_{{\rm{ln}}}}-\mathrm{pH}\)
2 \(\log \dfrac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}={\rm{p}}{{\rm{K}}_{{\rm{ln}}}}-\mathrm{pH}\)
3 \({\rm{log}}\frac{{[{\rm{HIn}}]}}{{\left[ {{\rm{I}}{{\rm{n}}^{\rm{ - }}}} \right]}} = {\rm{pH}} - {\rm{p}}{{\rm{K}}_{{\rm{ln}}}}\)
4 \({\rm{log}}\frac{{\left[ {{\rm{I}}{{\rm{n}}^{\rm{ - }}}} \right]}}{{{\rm{[HIn]}}}} = {\rm{pH}} - {\rm{p}}{{\rm{K}}_{{\rm{ln}}}}\)