314239
Assertion : At \(\mathrm{300 \mathrm{~K}}\), kinetic energy of \(\mathrm{16 \mathrm{gms}}\) of methane is equal to the kinetic energy of 32 gms of dioxygen. Reason : At constant temperature, kinetic energy of one mole of all gases is equal.
1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
3 If Assertion is true but Reason is false.
4 If both Assertion is true but Reason is false.
Explanation:
Conceptual Questions
CHXI06:STATES OF MATTER
314240
3 moles of a gas are present in a vessel at a temperature of \(\mathrm{27^{\circ} \mathrm{C}}\). Calculate the value of gas constant \(\mathrm{(R)}\) in terms of kinetic energy of the molecules of the gas.
1 \(\mathrm{7.4 \times 10^{-4} \mathrm{KE}}\) per degree kelvin.
2 \(\mathrm{9.4 \times 10^{-5} \mathrm{KE}}\) per degree kelvin.
3 \(\mathrm{4.5 \times 10^{-6} \mathrm{KE}}\) per degree kelvin.
4 None of these
Explanation:
K.E. for 1 mole \(\mathrm{=\dfrac{3}{2} R T}\) K.E. for 3 moles \(\mathrm{=\dfrac{9}{2} R T}\) or \(\mathrm{R=\dfrac{2}{9 T} K E=\dfrac{2}{9(300)} K E}\) \(\mathrm{=7.4 \times 10^{-4} \mathrm{KE}}\) per degree Kelvin.
CHXI06:STATES OF MATTER
314241
One mole of oxygen gas at \(\mathrm{273 \mathrm{~K}}\) and one mole of sulphur dioxide gas at \(\mathrm{546 \mathrm{~K}}\) are taken in two separate containers, then
1 kinetic energy of both are equal
2 kinetic energy of \(\mathrm{\mathrm{O}_{2} < }\) kinetic energy of \(\mathrm{\mathrm{SO}_{2}}\)
3 kinetic energy of \(\mathrm{\mathrm{O}_{2}>}\) kinetic energy of \(\mathrm{\mathrm{SO}_{2}}\)
4 none of these
Explanation:
For oxygen, \(\mathrm{n=1}\) mole, \(\mathrm{T=273 \mathrm{~K}}\) For sulphur dioxide, \(\mathrm{\mathrm{n}=1}\) mole \(\mathrm{\mathrm{T}=546 \mathrm{~K}=2(273) \mathrm{K}}\) Kinetic energy \(\mathrm{=\dfrac{3 R T}{2}}\) \(\frac{{{\rm{K}}{\rm{.}}{{\rm{E}}_{{{\rm{O}}_{\rm{2}}}}}}}{{{\rm{\;K}}{\rm{.}}{{\rm{E}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{\rm{ = }}\frac{{\frac{{\rm{3}}}{{\rm{2}}}{\rm{ \times R \times T}}}}{{\frac{{\rm{3}}}{{\rm{2}}}{\rm{ \times R \times 2\;T}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\) K.E. of \(\mathrm{\mathrm{SO}_{2}=2 \times}\) K.E. of \(\mathrm{\mathrm{O}_{2}}\) \(\mathrm{\therefore}\) Kinetic energy of \(\mathrm{\mathrm{SO}_{2}>}\) Kinetic energy of \(\mathrm{\mathrm{O}_{2}}\).
314239
Assertion : At \(\mathrm{300 \mathrm{~K}}\), kinetic energy of \(\mathrm{16 \mathrm{gms}}\) of methane is equal to the kinetic energy of 32 gms of dioxygen. Reason : At constant temperature, kinetic energy of one mole of all gases is equal.
1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
3 If Assertion is true but Reason is false.
4 If both Assertion is true but Reason is false.
Explanation:
Conceptual Questions
CHXI06:STATES OF MATTER
314240
3 moles of a gas are present in a vessel at a temperature of \(\mathrm{27^{\circ} \mathrm{C}}\). Calculate the value of gas constant \(\mathrm{(R)}\) in terms of kinetic energy of the molecules of the gas.
1 \(\mathrm{7.4 \times 10^{-4} \mathrm{KE}}\) per degree kelvin.
2 \(\mathrm{9.4 \times 10^{-5} \mathrm{KE}}\) per degree kelvin.
3 \(\mathrm{4.5 \times 10^{-6} \mathrm{KE}}\) per degree kelvin.
4 None of these
Explanation:
K.E. for 1 mole \(\mathrm{=\dfrac{3}{2} R T}\) K.E. for 3 moles \(\mathrm{=\dfrac{9}{2} R T}\) or \(\mathrm{R=\dfrac{2}{9 T} K E=\dfrac{2}{9(300)} K E}\) \(\mathrm{=7.4 \times 10^{-4} \mathrm{KE}}\) per degree Kelvin.
CHXI06:STATES OF MATTER
314241
One mole of oxygen gas at \(\mathrm{273 \mathrm{~K}}\) and one mole of sulphur dioxide gas at \(\mathrm{546 \mathrm{~K}}\) are taken in two separate containers, then
1 kinetic energy of both are equal
2 kinetic energy of \(\mathrm{\mathrm{O}_{2} < }\) kinetic energy of \(\mathrm{\mathrm{SO}_{2}}\)
3 kinetic energy of \(\mathrm{\mathrm{O}_{2}>}\) kinetic energy of \(\mathrm{\mathrm{SO}_{2}}\)
4 none of these
Explanation:
For oxygen, \(\mathrm{n=1}\) mole, \(\mathrm{T=273 \mathrm{~K}}\) For sulphur dioxide, \(\mathrm{\mathrm{n}=1}\) mole \(\mathrm{\mathrm{T}=546 \mathrm{~K}=2(273) \mathrm{K}}\) Kinetic energy \(\mathrm{=\dfrac{3 R T}{2}}\) \(\frac{{{\rm{K}}{\rm{.}}{{\rm{E}}_{{{\rm{O}}_{\rm{2}}}}}}}{{{\rm{\;K}}{\rm{.}}{{\rm{E}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{\rm{ = }}\frac{{\frac{{\rm{3}}}{{\rm{2}}}{\rm{ \times R \times T}}}}{{\frac{{\rm{3}}}{{\rm{2}}}{\rm{ \times R \times 2\;T}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\) K.E. of \(\mathrm{\mathrm{SO}_{2}=2 \times}\) K.E. of \(\mathrm{\mathrm{O}_{2}}\) \(\mathrm{\therefore}\) Kinetic energy of \(\mathrm{\mathrm{SO}_{2}>}\) Kinetic energy of \(\mathrm{\mathrm{O}_{2}}\).
314239
Assertion : At \(\mathrm{300 \mathrm{~K}}\), kinetic energy of \(\mathrm{16 \mathrm{gms}}\) of methane is equal to the kinetic energy of 32 gms of dioxygen. Reason : At constant temperature, kinetic energy of one mole of all gases is equal.
1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
3 If Assertion is true but Reason is false.
4 If both Assertion is true but Reason is false.
Explanation:
Conceptual Questions
CHXI06:STATES OF MATTER
314240
3 moles of a gas are present in a vessel at a temperature of \(\mathrm{27^{\circ} \mathrm{C}}\). Calculate the value of gas constant \(\mathrm{(R)}\) in terms of kinetic energy of the molecules of the gas.
1 \(\mathrm{7.4 \times 10^{-4} \mathrm{KE}}\) per degree kelvin.
2 \(\mathrm{9.4 \times 10^{-5} \mathrm{KE}}\) per degree kelvin.
3 \(\mathrm{4.5 \times 10^{-6} \mathrm{KE}}\) per degree kelvin.
4 None of these
Explanation:
K.E. for 1 mole \(\mathrm{=\dfrac{3}{2} R T}\) K.E. for 3 moles \(\mathrm{=\dfrac{9}{2} R T}\) or \(\mathrm{R=\dfrac{2}{9 T} K E=\dfrac{2}{9(300)} K E}\) \(\mathrm{=7.4 \times 10^{-4} \mathrm{KE}}\) per degree Kelvin.
CHXI06:STATES OF MATTER
314241
One mole of oxygen gas at \(\mathrm{273 \mathrm{~K}}\) and one mole of sulphur dioxide gas at \(\mathrm{546 \mathrm{~K}}\) are taken in two separate containers, then
1 kinetic energy of both are equal
2 kinetic energy of \(\mathrm{\mathrm{O}_{2} < }\) kinetic energy of \(\mathrm{\mathrm{SO}_{2}}\)
3 kinetic energy of \(\mathrm{\mathrm{O}_{2}>}\) kinetic energy of \(\mathrm{\mathrm{SO}_{2}}\)
4 none of these
Explanation:
For oxygen, \(\mathrm{n=1}\) mole, \(\mathrm{T=273 \mathrm{~K}}\) For sulphur dioxide, \(\mathrm{\mathrm{n}=1}\) mole \(\mathrm{\mathrm{T}=546 \mathrm{~K}=2(273) \mathrm{K}}\) Kinetic energy \(\mathrm{=\dfrac{3 R T}{2}}\) \(\frac{{{\rm{K}}{\rm{.}}{{\rm{E}}_{{{\rm{O}}_{\rm{2}}}}}}}{{{\rm{\;K}}{\rm{.}}{{\rm{E}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{\rm{ = }}\frac{{\frac{{\rm{3}}}{{\rm{2}}}{\rm{ \times R \times T}}}}{{\frac{{\rm{3}}}{{\rm{2}}}{\rm{ \times R \times 2\;T}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\) K.E. of \(\mathrm{\mathrm{SO}_{2}=2 \times}\) K.E. of \(\mathrm{\mathrm{O}_{2}}\) \(\mathrm{\therefore}\) Kinetic energy of \(\mathrm{\mathrm{SO}_{2}>}\) Kinetic energy of \(\mathrm{\mathrm{O}_{2}}\).
314239
Assertion : At \(\mathrm{300 \mathrm{~K}}\), kinetic energy of \(\mathrm{16 \mathrm{gms}}\) of methane is equal to the kinetic energy of 32 gms of dioxygen. Reason : At constant temperature, kinetic energy of one mole of all gases is equal.
1 If both Assertion & Reason are true and the reason is the correct explanation of the assertion.
2 If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.
3 If Assertion is true but Reason is false.
4 If both Assertion is true but Reason is false.
Explanation:
Conceptual Questions
CHXI06:STATES OF MATTER
314240
3 moles of a gas are present in a vessel at a temperature of \(\mathrm{27^{\circ} \mathrm{C}}\). Calculate the value of gas constant \(\mathrm{(R)}\) in terms of kinetic energy of the molecules of the gas.
1 \(\mathrm{7.4 \times 10^{-4} \mathrm{KE}}\) per degree kelvin.
2 \(\mathrm{9.4 \times 10^{-5} \mathrm{KE}}\) per degree kelvin.
3 \(\mathrm{4.5 \times 10^{-6} \mathrm{KE}}\) per degree kelvin.
4 None of these
Explanation:
K.E. for 1 mole \(\mathrm{=\dfrac{3}{2} R T}\) K.E. for 3 moles \(\mathrm{=\dfrac{9}{2} R T}\) or \(\mathrm{R=\dfrac{2}{9 T} K E=\dfrac{2}{9(300)} K E}\) \(\mathrm{=7.4 \times 10^{-4} \mathrm{KE}}\) per degree Kelvin.
CHXI06:STATES OF MATTER
314241
One mole of oxygen gas at \(\mathrm{273 \mathrm{~K}}\) and one mole of sulphur dioxide gas at \(\mathrm{546 \mathrm{~K}}\) are taken in two separate containers, then
1 kinetic energy of both are equal
2 kinetic energy of \(\mathrm{\mathrm{O}_{2} < }\) kinetic energy of \(\mathrm{\mathrm{SO}_{2}}\)
3 kinetic energy of \(\mathrm{\mathrm{O}_{2}>}\) kinetic energy of \(\mathrm{\mathrm{SO}_{2}}\)
4 none of these
Explanation:
For oxygen, \(\mathrm{n=1}\) mole, \(\mathrm{T=273 \mathrm{~K}}\) For sulphur dioxide, \(\mathrm{\mathrm{n}=1}\) mole \(\mathrm{\mathrm{T}=546 \mathrm{~K}=2(273) \mathrm{K}}\) Kinetic energy \(\mathrm{=\dfrac{3 R T}{2}}\) \(\frac{{{\rm{K}}{\rm{.}}{{\rm{E}}_{{{\rm{O}}_{\rm{2}}}}}}}{{{\rm{\;K}}{\rm{.}}{{\rm{E}}_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}{\rm{ = }}\frac{{\frac{{\rm{3}}}{{\rm{2}}}{\rm{ \times R \times T}}}}{{\frac{{\rm{3}}}{{\rm{2}}}{\rm{ \times R \times 2\;T}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\) K.E. of \(\mathrm{\mathrm{SO}_{2}=2 \times}\) K.E. of \(\mathrm{\mathrm{O}_{2}}\) \(\mathrm{\therefore}\) Kinetic energy of \(\mathrm{\mathrm{SO}_{2}>}\) Kinetic energy of \(\mathrm{\mathrm{O}_{2}}\).